Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 27-38.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1180
Previous Articles Next Articles
WU Jia-jin1, ZHU Sen-lin1, ZHOU Mi2, SUN Hui-zeng1
Received:
2019-12-04
Online:
2020-02-26
Published:
2020-02-23
WU Jia-jin, ZHU Sen-lin, ZHOU Mi, SUN Hui-zeng. Research Progress and Trends on Rumen Microbiota in Dairy Cows[J]. Biotechnology Bulletin, 2020, 36(2): 27-38.
[1] Baumgard L, Collier R, Bauman D.A 100-year review:regulation of nutrient partitioning to support lactation[J]. Journal of Dairy Science, 2017, 100(12):10353-10366. [2] Bradford BJ, Yuan K, Ylioja C.Managing complexity:Dealing with systemic crosstalk in bovine physiology[J]. Journal of Dairy Science, 2016, 99(6):4983-4996. [3] Jami E, Mizrahi I.Composition and similarity of bovine rumen microbiota across individual animals[J]. PLoS One, 2012, 7(3):e33306. [4] Jami E, White BA, Mizrahi I.Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency[J]. PLoS One, 2014, 9(1):e85423. [5] Hungate RE.The rumen and its microbes[M]. Elsevier, 2013. [6] Malmuthuge N, Griebel P, Guan L.The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract[J]. Frontiers in Veterinary Science, 2015, 2:36. [7] Malmuthuge N.Understanding the gut microbiome of dairy calves:Opportunities to improve early-life gut health[J]. Journal of Dairy Science, 2017, 100(7):5996-6005. [8] Stewart RD, Auffret MD, Warr A, et al.Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8):953-961. [9] Pfeifer S.From next-generation resequencing reads to a high-quality variant data set[J]. Heredity, 2017, 118(2):111. [10] Costea PI, Zeller G, Sunagawa S, et al.Towards standards for human fecal sample processing in metagenomic studies[J]. Nature Biotechnology, 2017, 35(11):1069. [11] Balvočiūtė M, Huson DH. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?[J]. BMC Genomics, 2017, 18(2):114. [12] Weiss S, Xu Z, Peddada S, et al.Normalization and microbial diffe-rential abundance strategies depend upon data characteristics[J]. Microbiome, 2017, 5(1):27. [13] Connor E.Invited review:improving feed efficiency in dairy production:challenges and possibilities[J]. Animal, 2015, 9(3):395-408. [14] Weimer PJ, Cox MS, Vieira de Paula TV, et al. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high-and low-efficiency Holstein cows[J]. Journal of Dairy Science, 2017, 100(9):7165-7182. [15] Arndt C, Powell JM, Aguerre M, et al.Feed conversion efficiency in dairy cows:Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens[J]. Journal of Dairy Science, 2015, 98(6):3938-3950. [16] VandeHaar M, Armentano L, Weigel K, et al. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency[J]. Journal of Dairy Science, 2016, 99(6):4941-4954. [17] Berry DP, Coffey M, Pryce J, et al.International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources[J]. Journal of Dairy Science, 2014, 97(6):3894-3905. [18] Rius A, Kittelmann S, Macdonald K, et al.Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture[J]. Journal of Dairy Science, 2012, 95(9):5024-5034. [19] France J, Dijkstra J.Volatile fatty acid production[J]. Quantitative Aspects of Ruminant Digestion and Metabolism, 2005, 2:157-175. [20] Clark J, Klusmeyer T, Cameron M.Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows[J]. Journal of Dairy Science, 1992, 75(8):2304-2323. [21] Guan L, Nkrumah JD, Basarab JA, et al.Linkage of microbial ecology to phenotype:correlation of rumen microbial ecology to cattle’s feed efficiency[J]. FEMS Microbiology Letters, 2008, 288(1):85-91. [22] Hernandez-Sanabria E, Goonewardene LA, Li M, et al.Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits[J]. Applied Environmental Microbiology, 2010, 76(19):6338-6350. [23] Hernandez-Sanabria E, Goonewardene LA, Wang Z, et al.Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle[J]. Applied Environmental Microbiology, 2012, 78(4):1203-1214. [24] Zhou M, Hernandez-Sanabria E.Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis[J]. Applied Environmental Microbiology, 2010, 76(12):3776-3786. [25] Li F, Li C, Guan L, et al.Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle[J]. Microbiome, 2019, 7:92. [26] Carberry CA, Kenny DA, Han S, et al.Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle[J]. Applied Environmental Microbiology, 2012, 78(14):4949-4958. [27] Myer PR, Smith TP, Wells JE, et al.Rumen microbiome from steers differing in feed efficiency[J]. PLoS One, 2015, 10(6):e0129174. [28] Jewell KA, McCormick CA, Odt CL, et al. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency[J]. Applied and Environmental Microbiology, 2015, 81(14):4697-4710. [29] Xue M, Sun H, Liu J, et al.Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle[J]. Environmental Microbiology, 2018, 84:19 e00970-18. [30] Shabat SKB, Sasson G, Doron-Faigenboim A, et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. The ISME Journal, 2016, 10(12):2958-2972. [31] Xue M, Sun H, Liu J, et al.Assessment of rumen bacteria in dairy cows with varied milk protein yield[J]. Journal of Dairy Science, 2019, 102(6):5031-5040. [32] Nocek J, Kautz W, Leedle J, et al.Direct-fed microbial supplementation on the performance of dairy cattle during the transition period[J]. Journal of Dairy Science, 2003, 86(1):331-335. [33] Lima FS, Oikonomou G, Lima SF, et al.Prepartum and postpartum rumen fluid microbiomes:characterization and correlation with production traits in dairy cows[J]. Applied and Environmental Microbiology, 2015, 81(4):1327-1337. [34] Derakhshani H, Tun HM, Cardoso FC, et al.Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters[J]. Frontiers in Microbiology, 2017, 7:2143. [35] Indugu N, Vecchiarelli B, Baker LD, et al.Comparison of rumen bacterial communities in dairy herds of different production[J]. BMC microbiology, 2017, 17(1):190. [36] Cunha CS, Veloso CM, Marcondes, MI, et al.Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate[J]. Systematic and Applied Microbiology, 2017, 40(8):492-499. [37] Pitta D, Indugu N, Vecchiarelli B, et al.Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows[J]. Journal of Dairy Science, 2018, 101(1):295-309. [38] Khan RU, Naz S, Dhama K, et al.Direct-fed microbial:beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health[J]. International Journal of Pharmacology, 2016, 12(3):220-231. [39] Weimer PJ.Redundancy, resilience, and host specificity of the ruminal microbiota:implications for engineering improved ruminal fermentations[J]. Frontiers in Microbiology, 2015, 10(6):296. [40] Bickhart D, Weimer P.Host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows[J]. Journal of Dairy Science, 2017, 101(8):7680-7689. [41] Sun H, Wang D, Wang B, et al.Metabolomics of four biofluids from dairy cows:potential biomarkers for milk production and quality[J]. Journal of Proteome Research, 2015, 14(2):1287-1298. [42] Zhang J, Shi H, Wang Y, et al.Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers[J]. Frontiers in Microbiology, 2017, 8:2206. [43] De Mulder T, Peiren N, Vandaele L, et al.Impact of breed on the rumen microbial community composition and methane emission of Holstein Friesian and Belgian Blue heifers[J]. Livestock Science, 2018, 207:38-44. [44] Knapp J, Laur G, Vadas P, et al.Invited review:Enteric methane in dairy cattle production:Quantifying the opportunities and impact of reducing emissions[J]. Journal of Dairy Science, 2014, 97(6):3231-3261. [45] Benchaar C, Hassanat F, Gervais R, et al.Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production[J]. Journal of Dairy Science, 2013, 96(4):2413-2427. [46] Hassanat F, Gervais R, Julien C, et al.Replacing alfalfa silage with corn silage in dairy cow diets:Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production[J]. Journal of Dairy Science, 2013, 96(7):4553-4567. [47] Stocker TF, Qin D, Plattner GK, et al.Climate change 2013:The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2014. [48] Bulumulla A, Zhou M, Guan L.Achieving sustainable production of cow’s milk[M]. 3rded. Alberta:Burleigh Dodds Science Publishing, 2017. [49] Ding X, Long R, Zhang Q, et al.Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil[J]. Tropical Animal Health and Production, 2012, 44(7):1541-1545. [50] Hristov A, Callaway T, Lee C, et al.Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid[J]. Journal of Animal Science, 2012, 90(12):4449-4457. [51] King EE, Smith RP, St-Pierre B, et al.Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen[J]. Applied Environmental Microbiology, 2011, 77(16):5682-5687. [52] Jouany J, Demeyer D, Grain J.Effect of defaunating the rumen[J]. Animal Feed Science and Technology, 1988, 21(2-4):229-265. [53] Morgavi D, Jouany JP, Martin C.Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep[J]. Australian Journal of Experimental Agriculture, 2008, 48(2):69-72. [54] Mosoni P, Martin C, Forano E, et al.Long-term defaunation incre-ases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep[J]. Journal of Animal Science, 2011, 89(3):783-791. [55] Beauchemin KA, McGinn SM. Reducing methane in dairy and beef cattle operations:what is feasible[J]. Prairie Soil Crop, 2008, 1:17-21. [56] Danielsson R, Schnürer A, Arthurson V, et al.Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage[J]. Applied Environmental Microbiology, 2012, 78(17):6172-6179. [57] Shi W, Moon CD, Leahy SC, et al.Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome[J]. Genome Research, 2014, 24(9):1517-1525. [58] Zhou M, Chung YH, Beauchemin K, et al.Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive[J]. Journal of Applied Microbiology, 2011, 111(5):1148-1158. [59] Danielsson R, Dicksved J, Sun L, et al.Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure[J]. Frontiers in Microbiology, 2017, 8:226. [60] Wallace RJ, Sasson G, Garnsworthy PC, et al.A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[J]. Science Advances, 2019, 5:78391. [61] Chung YH, Zhou M, Holtshausen L, et al.A fibrolytic enzyme additive for lactating Holstein cow diets:Ruminal fermentation, rumen microbial populations, and enteric methane emissions[J]. Journal of Dairy Science, 2012, 95(3):1419-1427. [62] Duthie CA, Troy SM, Hyslop JJ, et al.The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle[J]. Animal, 2018, 12(2):280-287. [63] Haisan J, Sun Y, Guan L, et al.The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation[J]. Journal of Dairy Science, 2014, 97(5):3110-3119. [64] Reynolds CK, Humphries DJ, Kirton P, et al.Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows[J]. Journal of Dairy Science, 2014, 97(6):3777-3789. [65] Duval S, Kindermann M.Use of nitrooxy organic molecules in feed for reducing enteric methane emissions in ruminants, and/or to improve ruminant performance[J]. International Patent Application, 2012, 84629:A1. [66] Zhou M, Hünerberg M, Guan L, et al.Air-dried brown seaweed, ascophyllum nodosum, alters the rumen microbiome in a manner that changes rumen fermentation profiles and lowers the prevalence of foodborne pathogens[J]. Applied and Environmental Science, 2018, 3:17-18. [67] Zhou M, Chen Y, Griebel PJ.Methanogen prevalence throughout the gastrointestinal tract of pre-weaned dairy calves[J]. Gut Microbes, 2014, 5(5):628-638. [68] Yáñez-Ruiz DR, Abecia L, Newbold CJ.Manipulating rumen microbiome and fermentation through interventions during early life:a review[J]. Frontiers in Microbiology, 2015, 6:1133. [69] Li F, Guan LL. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle[J]. Applied Environmental Microbiology, 2017, 83(9). pii:e00061-00017. [70] Jami E, Israel A, Kotser A, et al.Exploring the bovine rumen bacterial community from birth to adulthood[J]. The ISME Journal, 2013, 7(6):1069-1079. [71] Rey M, Enjalbert F, Combes S, et al.Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential[J]. Journal of Applied Microbiology, 2014, 116(2):245-257. [72] Li R, Connor EE, Li C, et al.Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools[J]. Environmental Microbiology, 2012, 14(1):129-139. [73] Malmuthuge N, Griebel PJ.Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves[J]. Applied Environmental Microbiology, 2014, 80(6):2021-2028. [74] Langille MG, Zaneveld J, Caporaso JG, et al.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9):814-821. [75] Aβhauer KP, Wemheuer B, Daniel R, et al.Tax4Fun:predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17):2882-2884. [76] Douglas GM, Maffei VJ, Zaneveld J, et al.Langille PICRUSt2:An improved and extensible approach for metagenome inference[J]. BioRxiv, 2019, 67:2295. [77] Malmuthuge N, Guan L.Gut microbiome and omics:a new definition to ruminant production and health[J]. Animal Frontiers, 2016, 6(2):8-12. [78] Dill-McFarland KA, Breaker JD, Suen G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation[J]. Scientific Reports, 2017, 7:40864. [79] Abecia L, Martín-García A, Martínez G, et al.Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning[J]. Journal of Animal Science, 2013, 91(10):4832-4840. [80] Abecia L, Ramos-Morales E, Martínez-Fernandez G, et al.Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids[J]. Animal Production Science, 2014, 54(9):1449-1454. [81] Abecia L, Jiménez E, Martínez-Fernandez G, et al.Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats[J]. PLoS One, 2017, 12(8):e0182235. [82] Chakravorty S, Helb D, Burday M, et al.A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria[J]. Journal of Microbiological Methods, 2007, 69(2):330-339. [83] Frank JA, Reich CI, Sharma S, et al.Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes[J]. Applied Environmental Microbiology, 2008, 74(8):2461-2470. [84] Jovel J, Patterson J, Wang W, et al.Characterization of the gut microbiome using 16S or shotgun metagenomics[J]. Frontiers in Microbiology, 2016, 7:459. [85] Baldwin R, McLeod K, Klotz J, et al. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant[J]. Journal of Dairy Science, 2004, 87:55-65. [86] Connor EE, Baldwin RL, Li CJ, et al.Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth[J]. Functional & Integrative Genomics, 2013, 13(1):133-142. [87] Connor E, Baldwin R, Walker M, et al.Transcriptional regulators transforming growth factor-β1 and estrogen-related receptor-αidentified as putative mediators of calf rumen epithelial tissue development and function during weaning[J]. Journal of Dairy Science, 2014, 97(7):4193-4207. [88] Liang G, Malmuthuge N, McFadden TB, et al. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J]. PLoS One, 2014, 9(3):e92592. [89] Naeem A, Drackley JK, Lanier JS, et al.Ruminal epithelium transcriptome dynamics in response to plane of nutrition and age in young Holstein calves[J]. Functional & Integrative Genomics, 2014, 14(1):261-273. [90] Malmuthuge N, Liang G, Guan L.Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes[J]. Genome Biology, 2019, 20:172. [91] Sommer F, Bäckhed F.The gut microbiota—masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4):227-238. [92] Malmuthuge N.Role of commensal microbiota in neonatal calf gut development[D]. Edmonton:University of Alberta, 2016. [93] Seshadri R, Leahy SC, Attwood GT, et al.Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection[J]. Nature Biotechnology, 2018, 36(4):359-367. [94] Moraïs S, Mizrahi I.The road not taken:the rumen microbiome, functional groups, and community states[J]. Trends in Microbiology, 2019, 27(6):538-549. |
[1] | LI Yu-hang, WANG Xing-ping, YANG Jian, LUORENG Zhuo-ma, REN Qian-qian, WEI Da-wei, MA Yun. Expression and Functional Analysis of miR-665 in Bovine Mammary Epithelial Cell Inflammation [J]. Biotechnology Bulletin, 2022, 38(5): 159-168. |
[2] | WANG Jin-peng, LUORENG Zhuo-ma, WANG Xing-ping, YANG Jian, JIA Li, MA Yun, WEI Da-wei. Research Progress in Treatment and Anti-inflammatory Molecular Mechanism of Cow Mastitis [J]. Biotechnology Bulletin, 2021, 37(12): 212-219. |
[3] | ZHANG Meng, LUO Fang, WANG Min, WU Yan-ze, WANG Jun-kui, HE Dong-qian, CHEN Li-yao, TAO Jin-zhong. Changes in Plasma Metabolites After Calving in Dairy Cows [J]. Biotechnology Bulletin, 2020, 36(6): 191-199. |
[4] | HU Qi-chao, LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping, MA Yun. Research Progress on Innate Immunity-Related Coding Genes in the Regulation of Cow Mastitis [J]. Biotechnology Bulletin, 2020, 36(12): 239-246. |
[5] | ZHANG Meng, LIU Guo-lin, LI Xiang-long, CHEN Yong-hong, BAI Ling-rong, LUO Fang, LI Ya-chao, TAO Jin-zhong. Effect of Adding Hawthorn and Astragalus Mixtures on the Plasma Metabolome of Perinatal Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(8): 127-137. |
[6] | MING Peng-fei, HUANG Ying-ying, DONG Yan-li, NIE Xing-can, FENG Shi-bin, WANG Xi-chun, CHENG Jian-bo, LI Jin-chun, WU Jin-jie, LI Yu. Regulation of LKB1-AMPKα-SIRT1 Signal Pathway in Lipid Metabolism in the Adipose Tissue of Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(2): 176-181. |
[7] | Sun Wei, Ba Teer, Guo Jitong, Li Rongfeng, Wang Jianguo, Li Ming, Hu Shuxiang, Wang Chunsheng, Li Xihe. Optimization of Production Conditions for Dairy Cows Somatic Cell Nuclear Transfer Embryos [J]. Biotechnology Bulletin, 2013, 0(2): 86-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||