Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 39-48.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0747
Previous Articles Next Articles
WANG Bing, LUO Hai-ling
Received:
2019-08-20
Online:
2020-02-26
Published:
2020-02-23
WANG Bing, LUO Hai-ling. Research Progress on Interaction Between Rumen Microorganisms and Host and Its Dietary Regulation[J]. Biotechnology Bulletin, 2020, 36(2): 39-48.
[1] Ripple WJ, Smith P, Haberl H, et al.Ruminants, climate change and climate policy[J]. Pearson Education, 2013, 19(2):2-5. [2] Huws SA, Creevey CJ, Oyama L B, et al.Addressing global ruminant agricultural challenges through understanding the rumen microbiome:past, present, and future[J]. Frontiers in Microbiology, 2018, 9:2161. [3] Jami E, White BA, Mizrahi I.Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency[J]. PLoS One, 2014, 9(1):e85423. [4] Zeineldin M, Barakat R, Elolimy A, et al.Synergetic action between the rumen microbiota and bovine health[J]. Microbial Pathogenesis, 2018, 124:106-115. [5] Morgavi DP, Kelly WJ, Janssen PH, et al.Rumen microbial(meta)genomics and its application to ruminant production[J]. Animal, 2013, 7(S1):184-201. [6] Koike S, Kobayashi Y.Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens[J]. FEMS Microbiology Letters, 2001, 204(2):361-366. [7] Fouts DE, Szpakowski S, Purushe J, et al.Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen[J]. PLoS One, 2012, 7(11):e48289. [8] Mackie RI, Aminov RI, White BA, et al.Molecular ecology and diversity in gut microbial ecosystems[M]// CronjeB. Ruminant Physiology:Digestion, Metabolism, Growth and Reproduction. London:CAB International, 2000. [9] Jewell KA, McCormick CA, Odt CL, et al. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency[J]. Appl Environ Microbiol, 2015, 81(14):4697-4710. [10] Stewart RD, Auffret MD, Warr A, et al.Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8):953-961. [11] Choudhury PK, Salem AZM, Jena R, et al.Rumen microbiology:An overview[M]//Rumen microbiology:from evolution to revolution. New Delhi:Springer, 2015:3-16. [12] Newbold CJ, De La Fuente G, Belanche A, et al. The role of ciliate protozoa in the rumen[J]. Frontiers in Microbiology, 2015, 6:1313. [13] Kittelmann S, Janssen PH.Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries[J]. FEMS Microbiology Ecology, 2011, 75(3):468-481. [14] Henderson G, Cox F, Ganesh S, et al.Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Scientific Reports, 2015, 5:14567. [15] Medinger R, Nolte V, Pandey RV, et al.Diversity in a hidden world:potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms[J]. Molecular Ecology, 2010, 19:32-40. [16] Ohland CL, Jobin C.Microbial activities and intestinal homeosta-sis:a delicate balance between health and disease[J]. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1(1):28-40. [17] Tan J, Mckenzie C, Potamitis M, et al.The role of short-chain fatty acids in health and disease[J]. Advances in Immunology, 2014, 121:91-119. [18] Jiao J, Zhang X, Wang M, et al.Linkages between epithelial microbiota and host transcriptome in the ileum during high-grain challenges:implications for gut homeostasis in goats[J]. Journal of Agricultural and Food Chemistry, 2018, 67(1):551-561. [19] Patil RD, Ellison MJ, Wolff SM, et al.Poor feed efficiency in sheep is associated with several structural abnormalities in the community metabolic network of their ruminal microbes1[J]. Journal of Animal Science, 2018, 96(6):2113-2124. [20] Shen H, Lu Z, Xu Z, et al.Associations among dietary non-fiber carbohydrate, ruminal microbiota and epithelium G-protein-coupled receptor, and histone deacetylase regulations in goats[J]. Microbiome, 2017, 5(1):123. [21] Lin L, Xie F, Sun D, et al.Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model[J]. Microbiome, 2019, 7(1):83. [22] Stevens CE, Hume ID.Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients [J]. Physiological Reviews, 1998, 78(2):393-427. [23] Rius AG, Kittelmann S, Macdonald KA, et al.Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture[J]. Journal of Dairy Science, 2012, 95(9):5024-5034. [24] McCann JC, Wiley LM, Forbes TD, et al. Relationship between the rumen microbiome and residual feed intake-efficiency of Brahman bulls stocked on bermudagrass pastures[J]. PLoS One, 2014, 9(3):e91864. [25] Herrero M, Havlík P, Valin H, et al.Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems[J]. Proceedings of the National Academy of Sciences, 2013, 110(52):20888-20893. [26] Garton GA.Fatty acid metabolism in ruminants. Biochemistry of Lipids II. T. W[M]. Goodwin, ed. Univ. Park Press, Baltimore, 1977:337-370. [27] Kim YJ, Liu RH, Rychlik JL, et al.The enrichment of a ruminal bacterium(Megasphaera elsdenii YJ-4)that produces the trans-10, cis-12 isomer of conjugated linoleic acid[J]. Journal of Applied Microbiology, 2002, 92(5):976-982. [28] Rico DE, Harvatine KJ.Induction of and recovery from milk fat depression occurs progressively in dairy cows switched between diets that differ in fiber and oil concentration[J]. Journal of Dairy science, 2013, 96(10):6621-6630. [29] Pitta DW, Indugu N, Vecchiarelli B, et al.Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows[J]. Journal of Dairy Science, 2018, 101(1):295-309. [30] Xue MY, Sun HZ, Wu XH, et al.Assessment of rumen bacteria in dairy cows with varied milk protein yield[J]. Journal of Dairy Science, 2019, 102(6):5031-5041. [31] Sun HZ, Plastow G, Guan LL.Invited review:Advances and challenges in application of feedomics to improve dairy cow production and health[J]. Journal of Dairy Science, 2019, 102(7):5853-5870. [32] Pitta DW, Pinchak WE, Dowd SE, et al.Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J]. Microbial Ecology, 2010, 59(3):511-522. [33] Krause DO, Nagaraja TG, Wright ADG, et al.Board-invited review:rumen microbiology:leading the way in microbial ecology[J]. Journal of Animal Science, 2013, 91(1):331-341. [34] Kim M, Morrison M, Yu Z.Status of the phylogenetic diversity census of ruminal microbiomes[J]. FEMS Microbiology Ecology, 2011, 76(1):49-63. [35] Steele MA, Croom J, Kahler M, et al.Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011, 300(6):R1515-R1523. [36] Stevenson DM, Weimer PJ.Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR[J]. Applied Microbiology and Biotechnology, 2007, 75(1):165-174. [37] Loor JJ, Elolimy AA, McCann JC. Dietary impacts on rumen microbiota in beef and dairy production[J]. Animal Frontiers, 2016, 6(3):22-29. [38] Van Gastelen S, Dijkstra J, Bannink A.Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?[J]. Journal of Dairy Science, 2019, 102(7):6109-6130. [39] Alexander TW, Plaizier JC.From the Editors:The importance of microbiota in ruminant production[J]. Animal Frontiers, 2016, 6(2):4-7. [40] Enjalbert F, Combes S, Zened A, et al.Rumen microbiota and dietary fat:a mutual shaping[J]. Journal of Applied Microbiology, 2017, 123(4):782-797. [41] Ohland CL, Jobin C.Microbial activities and intestinal homeosta-sis:a delicate balance between health and disease[J]. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1(1):28-40. [42] Antonopoulos DA, Huse SM, Morrison HG, et al.Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation[J]. Infection and Immunity, 2009, 77(6):2367-2375. [43] Shen H, Lu Z, Xu Z, et al.Antibiotic pretreatment minimizes dietary effects on reconstructure of rumen fluid and mucosal microbiota in goats[J]. Microbiology Open, 2018, 7(1):e00537. [44] Jernberg C, Löfmark S, Edlund C, et al.Long-term impacts of antibiotic exposure on the human intestinal microbiota[J]. Microbiology, 2010, 156(11):3216-3223. [45] Dethlefsen L, Huse S, Sogin ML, et al.The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing[J]. PLoS Biology, 2008, 6(11):e280. [46] Schären M, Drong C, Kiri K, et al.Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows[J]. Journal of Dairy Science, 2017, 100(4):2765-2783. [47] Gibson GR, Hutkins R, Sanders ME, et al.Expert consensus document:The international scientific association for probiotics and prebiotics(ISAPP)consensus statement on the definition and scope of prebiotics[J]. Nature reviews Gastroenterology & Hepatology, 2017, 14(8):491. [48] Krehbiel CR, Rust SR, Zhang G, et al.Bacterial direct-fed microbials in ruminant diets:Performance response and mode of action[J]. Journal of Animal Science, 2003, 81(S2):E120-E132. [49] Adjei-Fremah S, Ekwemalor K, Asiamah EK, et al.Effect of probiotic supplementation on growth and global gene expression in dairy cows[J]. Journal of Applied Animal Research, 2018, 46(1):257-263. [50] Tao S, Tian P, Luo Y, et al.Microbiome-metabolome responses to a high-grain diet associated with the hind-gut health of goats[J]. Frontiers in Microbiology, 2017, 8:1764. [51] Khafipour E, Li S, Tun HM, et al.Effects of grain feeding on microbiota in the digestive tract of cattle[J]. Animal Frontiers, 2016, 6(2):13-19. [52] Wang Z, He Z, Beauchemin KA, et al.Evaluation of different yeast species for improving in vitro fermentation of cereal straws[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(2):230. [53] Meissner HH, Henning PH, Horn CH, et al.Ruminal acidosis:A review with detailed reference to the controlling agent Megasphaera elsdenii NCIMB 41125[J]. South African Journal of Animal Science, 2010, 40(2):79. [54] Metzler B, Bauer E, Mosenthin R.Microflora management in the gastrointestinal tract of piglets[J]. Asian-Australasian Journal of Animal Sciences, 2005, 18(9):1353-1362. [55] Bidarkar VK, Swain PS, Ray S, et al.Probiotics:potential alternative to antibiotics in ruminant feeding[J]. Trends Vet Anim Sci, 2014, 1:1-4. [56] Ghazanfar S, Khalid N, Ahmed I, et al.Probiotic yeast:mode of action and its effects on ruminant nutrition[M]//Yeast—Industrial Applications, IntechOpen, 2017:179-202. [57] Stein DR, Allen DT, Perry EB, et al.Effects of feeding propionib-acteria to dairy cows on milk yield, milk components, and reprodu-ction[J]. Journal of Dairy Science, 2006, 89(1):111-125. [58] Arowolo MA, He J.Use of probiotics and botanical extracts to improve ruminant production in the tropics:A review[J]. Animal Nutrition, 2018, 4(3):241-249. [59] Belguesmia Y, Domenger D, Caron J, et al.Novel probiotic evidence of lactobacilli on immunomodulation and regulation of satiety hormones release in intestinal cells[J]. Journal of Functional Foods, 2016, 24:276-286. [60] Agarwal N, Kamra DN, Chaudhary LC, et al.Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives[J]. Letters in Applied Microbiology, 2002, 34(5):329-336. [61] Whitley NC, Cazac D, Rude BJ, et al.Use of a commercial probiotic supplement in meat goats[J]. Journal of Animal Science, 2009, 87(2):723-728. [62] Ruiz O, Castillo Y, Arzola C, et al.Effects of Candida norvegensis live cells on in vitro oat straw rumen fermentation[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(2):211. [63] Xiao JX, Alugongo GM, Chung R, et al.Effects of Saccharomyces cerevisiae fermentation products on dairy calves:Ruminal fermentation, gastrointestinal morphology, and microbial community[J]. Journal of Dairy Science, 2016, 99(7):5401-5412. [64] Ding G, Chang Y, Zhao L, et al.Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios[J]. Journal of Animal Science and Biotechnology, 2014, 5(1):24. [65] Tripathi VK, Sehgal JP, Puniya AK, et al.Effect of administration of anaerobic fungi isolated from cattle and wild blue bull(Boselaphus tragocamelus)on growth rate and fibre utilization in buffalo calves[J]. Archives of Animal Nutrition, 2007, 61(5):416-423. [66] Poppy GD, Rabiee AR, Lean IJ, et al.A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows[J]. Journal of Dairy Science, 2012, 95(10):6027-6041. [67] Yoon IK, Stern MD.Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows[J]. Journal of Dairy Science, 1996, 79(3):411-417. [68] Mao H, Mao H, Wang JK, et al.Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets[J]. Journal of Animal Science, 2013, 91(7):3291-3298. [69] Lu Q, Wu J, Wang M, et al.Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats[J]. Archives of Animal Nutrition, 2016, 70(3):224-238. [70] Li S, Yoon I, Scott M, et al.Impact of Saccharomyces cerevisiae fermentation product and subacute ruminal acidosis on production, inflammation, and fermentation in the rumen and hindgut of dairy cows[J]. Animal Feed Science and Technology, 2016, 211:50-60. [71] Gilani GS, Xiao CW, Cockell KA.Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality[J]. Bri J Nutr, 2012, 108(S2):S315-S332. [72] Wanapat M, Kongmun P, Poungchompu O, et al.Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology[J]. Tropical Animal Health and Production, 2012, 44(3):399-405. [73] Vasta V, Daghio M, Cappucci A, et al.Invited review:Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission:Experimental evidence and methodological approaches[J]. Journal of Dairy Science, 2019, 102(5):3781-3804. [74] Yusuf AL, Adeyemi KD, Samsudin AA, et al.Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats[J]. BMC Veterinary Research, 2017, 13(1):349. [75] Lei Z, Zhang K, Li C, et al.Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes[J]. BMC Microbiology, 2019, 19(1):30. [76] Wang B, Ma M, Diao Q, et al.Saponin-induced shifts in the rumen microbiome and metabolome of young cattle[J]. Frontiers in Microbiology, 2019, 10:356. [77] Wang M, Wang R, Zhang XM, et al.Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats[J]. Bri J Nutr, 2017, 118(6):401-410. [78] Zhao L, Meng Q, Li Y, et al.Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers[J]. BMC Microbiology, 2018, 18(1):21. [79] Mao S, Huo W, Liu J, et al.In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota[J]. Journal of the Science of Food and Agriculture, 2017, 97(4):1276-1285. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[3] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[4] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[5] | HAN Hua-rui, YANG Yu-lu, MEN Yi-han, HAN Shang-ling, HAN Yuan-huai, HUO Yi-qiong, HOU Si-yu. SiYABBYs Involved in Rhamnoside Biosynthesis During the Flower Development of Setaria italica, Based on Metabolomics [J]. Biotechnology Bulletin, 2023, 39(6): 189-198. |
[6] | LEI Cai-rong, GUO Xiao-peng, CHAI Ran, ZHANG Miao-miao, REN Jun-le, LU Dong. Application of Omics Techniques in Incluced Breecling via Heavy Ion Beam Irradiating Microorganisms [J]. Biotechnology Bulletin, 2023, 39(5): 54-62. |
[7] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[8] | WANG Xin-lu, WANG Meng, ZHAI Wen-lei. Application of Lipidomics in Toxicological Studies [J]. Biotechnology Bulletin, 2023, 39(3): 69-80. |
[9] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[10] | ZHANG Yan-feng, DING Yan-ling, MA Ying, ZHOU Xiao-nan, YANG Chao-yun, SHI Yuan-gang, KANG Xiao-long. Comparative Analysis of Rumen and Fecal Microbial Characteristics Associated with Residual Feed Intake in Beef Cattle [J]. Biotechnology Bulletin, 2023, 39(1): 295-304. |
[11] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[12] | ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2022, 38(7): 215-223. |
[13] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[14] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
[15] | ZHAO Ming-ming, TANG Yin, GUO Lei-zhou, HAN Jia-hui, GE Jia-ming, MENG Yong, PING Shu-zhen, ZHOU Zheng-fu, WANG Jin. Function Analysis of Lon1 Protease Involved in High Temperature Stress and Cell Division of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2022, 38(5): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||