Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (6): 223-229.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0899
Previous Articles Next Articles
WANG Xuan, CHEN Hai-xia
Received:
2019-09-25
Online:
2020-06-26
Published:
2020-06-28
WANG Xuan, CHEN Hai-xia. Research Progress on Plant ABCB Transporter[J]. Biotechnology Bulletin, 2020, 36(6): 223-229.
[1] Higgins CF.ABC transporters:From microorganisms to man[J]. Annual Review of Cell Biology, 1992, 8(1):67-113. [2] 刘艳青, 赵永芳. ABC转运蛋白结构与转运机制的研究进展[J]. 生命科学, 2017, 29(3):223-229. [3] Verrier PJ, Bird D, Burla B, et al.Plant ABC proteins-A unified nomenclature and updated inventory.[J]. Trends in Plant Science, 2008, 13(4):151-159. [4] Higgins CF, Linton KJ.The ATP switch model for ABC transporters[J]. Nature Structural & Molecular Biology, 2004, 11(10):918-926. [5] Jasinski M, Ducos E, Martinoia E, et al.The ATP-binding cassette transporters:structure, function, and gene family comparison between rice and Arabidopsis[J]. Plant Physiology, 2003, 131(3):1169-1177. [6] Davidson AL, Dassa E, Orelle C, Chen J. Structure, function,evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev, 2008, 7-2(2):317-364. [7] Bairoch A.The PROSITE dictionary of sites and patterns in proteins, its current status.[J]. Nucleic Acids Research, 1993, 21(13):3097-3103. [8] Rea PA.Plant ATP-binding cassette transporters[J]. Annual Review of Plant Biology, 2007, 58(58):347-375. [9] 王晓珠, 孙杨, 肖仁坚, 等. 甘蓝型油菜BnABCG8基因的克隆及表达分析[J]. 分子植物育种, 2018, 16(1):39-46. [10] Xu YX, Liu Y, Chen ST, et al.The B subfamily of plant ATP binding cassette transporters and their roles in auxin transport[J]. Biologia Plantarum, 2014, 58(3):401-410. [11] Yang H, Murphy AS.Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe[J]. Plant Journal, 2009, 59(1):179-191. [12] 王晓珠, 孙万梅, 马义峰, 等. 拟南芥ABC转运蛋白研究进展[J]. 植物生理学报, 2017, 53(2):133-144. [13] Verrier PJ, Bird D, Burla B, et al.Plant ABC proteins - a unified nomenclature and updated inventory[J]. Trends in Plant Science, 2008, 13(4):151-159. [14] Garcia O, Bouige P, Forestier C, et al.Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette(ABC)systems[J]. Journal of Molecular Biology, 2004, 343(1):249-265. [15] Teschner J, Lachmann N, Schulze J, et al.A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis[J]. Plant Cell, 2010, 22(2):468-480. [16] Jaquinod M, Villiers F, Kiefferjaquinod S, et al.A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture[J]. Molecular & Cellular Proteomics, 2007, 6(3):394-412. [17] Dassa E, Bouige P.The ABC of ABCs:a phylogenetic and functional classification of ABC systems in living organisms[J]. Research in Microbiology, 2001, 152(3-4):211-229. [18] Ofori PA, Mizuno A, Suzuki M, et al.Genome-wide analysis of ATP binding cassette(ABC)transporters in tomato[J]. PLoS One, 2018, 13(7):e0200854. [19] Sánchez-Fernández R, Davies TG, Coleman JO, et al.The Arabidopsis thaliana ABC protein superfamily, a complete inventory[J]. Journal of Biological Chemistry, 2001, 276(32):30231-30244. [20] 徐杏, 邱杰, 徐扬, 等. 水稻ABCB转运蛋白基因的分子进化和表达分析[J]. 中国水稻科学, 201, 26(2):127-136. [21] Zhang XD, Zhao KX, Yang ZM .Identification of genomic ATP binding cassette(ABC)transporter genes and Cd-responsive ABCs in Brassica napus[J]. Gene, 201, 664(7):139-151. [22] Pang K, Li Y, Liu M, et al.Inventory and general analysis of the ATP-binding cassette(ABC)gene superfamily in maize(Zea mays L.)[J]. Gene, 2013, 526(2):411-428. [23] Çakır B, Kılıçkaya O.Whole-Genome survey of the putative ATP-Binding cassette transporter family genes in Vitis vinifera[J]. PLoS One, 2013, 8(11):e78860. [24] Sugiyama A, Shitan N, Sato S, et al.Genome-wide analysis of ATP-binding cassette(ABC)proteins in a model legume plant, Lotus japonicus:comparison with Arabidopsis ABC protein family[J]. DNA Research, 2006, 13(5):205-228. [25] Kang J, Park J, Choi H, et al.Plant ABC transporters[M]// Plant ABC Transporters. Springer International Publishing, 2014. [26] 朱璐, 许杰, 张大兵. 拟南芥ABC转运类蛋白家族的分子进化、表达模式和蛋白功能网络预测分析[J]. 植物生理学报, 2012, 48(12):1151-1166. [27] McFarlane HE, Shin J J, Bird DA, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations[J]. Plant Cell, 2010, 22(9):3066-3075. [28] 杨慧. 植物对金属离子胁迫的响应机制研究[D]. 北京:中国科学院研究生院, 2010. [29] Kim DY, Bovet L, Kushnir S, et al.AtATM3 is involved in heavy metal resistance in Arabidopsis[J]. Plant Physiology, 2006, 140(3):922-932. [30] Yadav SK.Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany, 2010, 76(2):167-179. [31] Larsen PB, Cancel J, Rounds M, et al.Arabidopsis, ALS1, encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment[J]. Planta, 2007, 225(6):1447-1458. [32] Chen S, Sanchez-Fernandez R, Lyver ER, et al.Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis Half-molecule ATP-binding cassette transporters implicated in iron homeostasis[J]. Journal of Biological Chemistry, 2007, 282(29):21561-21571. [33] Teschner J, Lachmann N, Schulze J, et al.A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis[J]. Plant Cell, 2010, 22(2):468-480. [34] 李洁. 苦荞ABC转运蛋白基因的克隆与功能初步分析[D]. 西安:西北农林科技大学, 2018. [35] 宋春晖. 苹果IAA代谢几个关键基因在矮化砧木与miRNA在短枝品种中致矮作用研究[D]. 西安:西北农林科技大学, 2017. [36] Dudler R, Hertig C.Structure of an mdr-like gene from Arabidopsis thaliana[J]. J Biol Chem, 1992, 267(9):5882-5888. [37] Ma JJ, Han M.Genomewide analysis of ABCBs with a focus on ABCB1 and ABCB19 in Malus domestica[J]. Journal of Genetics, 2016, 95(1):141-149. [38] 宋春晖, 张东, 马娟娟, 等. 苹果生长素运输基因MdABCB19的克隆及其在矮化砧木中的表达分析[J]. 园艺学报, 2017(3):409-421. [39] Sassi M, Lu YF, Zhang YH, Wang J, et al.COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis[J]. Development, 2012, 139(18):3402-3412. [40] Nagashima A, Uehara Y, Sakai T.The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1- naphthyphthalamic acid on the phototropic and gravitropic respon- ses of Arabidopsis hypocotyls[J]. Plant Cell Physiol, 2008, 49(8):1250-1255. [41] Wu G, Carville JS, Spalding EP.ABCB19mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle[J]. Plant Journal, 2016, 85(2):209. [42] Geisler M, Murphy AS.The ABC of auxin transport:The role of pglycoproteins in plant development[J]. FEBS Letters, 2006, 580(4):1094-1102. [43] Sukumar P, Maloney GS, Muday GK.Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis[J]. Plant Physiology, 2013, 162(3):1392-1405. [44] 徐艳霞. OsABCB14参与水稻生长素转运及铁平衡[D]. 杭州:浙江大学, 2014. [45] Kaneda M, Schuetz M, Lin BS, et al.ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport[J]. Journal of Experimental Botany, 2011, 62(6):2063-2077. [46] Martin Kubě M, Yang H, Richter GL, et al.The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis[J]. Plant Journal, 2012, 69(4):640-654. [47] Kamimoto Y, Terasaka K, Hamamoto M, et al.Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration[J]. Plant and Cell Physiology, 2012, 53(12):2090-2100. [48] Lee M, Choi Y, Burla B, et al.The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2[J]. Nature Cell Biology, 2008, 10(10):1217-1223. [49] Bailly A, Haibing Y, Enrico M, et al.Plant lessons:Exploring ABCB functionality through structural modeling[J]. Frontiers in Plant Science, 2012(2):108. |
[1] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[2] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[3] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[4] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[7] | CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology [J]. Biotechnology Bulletin, 2023, 39(6): 141-148. |
[8] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[9] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[10] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[11] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[12] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[13] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[14] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[15] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||