Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (7): 235-244.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1115
Previous Articles Next Articles
YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao
Received:
2019-11-15
Online:
2020-07-26
Published:
2020-07-28
YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao. Screening and Evaluation Strategies of Cell-specific Nucleic Acid Aptamers[J]. Biotechnology Bulletin, 2020, 36(7): 235-244.
[1] Ruigrok VJ, Levisson M, Eppink MH, et al.Alternative affinity tools:More attractive than antibodies?[J]. The Biochemical Journal, 2011, 436(1):1-13. [2] Jayasena SD.Aptamers:An emerging class of molecules that rival antibodies in diagnostics[J]. Clinical Chemistry, 1999, 45(9):1628-1650. [3] Beck A, Wurch T, Bailly C, et al.Strategies and challenges for the next generation of therapeutic antibodies[J]. Nature Reviews Immunology, 2010, 10(5):345-352. [4] Ge Y, Turner AP.Too large to fit? Recent developments in macromolecular imprinting[J]. Trends in Biotechnology, 2008, 26(4):218-224. [5] Ellington AD, Szostak JW.In vitro selection of rna molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822. [6] Tuerk C, Gold L.Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968):505-510. [7] Darmostuk M, Rimpelova S, Gbelcova H, et al.Current approaches in SELEX:An update to aptamer selection technology[J]. Biotechnology Advances, 2015, 33(6):1141-1161. [8] Ye M, Hu J, Peng M, et al.Generating aptamers by Cell-SELEX for applications in molecular medicine[J]. International Journal of Molecular Sciences, 2012, 13(3):3341-3353. [9] Banerjee J, Nilsen-Hamilton M.Aptamers:Multifunctional molecules for biomedical research[J]. Journal of Molecular Medicine, 2013, 91(12):1333-1342. [10] Cai S, Yan J, Xiong H, et al.Investigations on the interface of nucleic acid aptamers and binding targets[J]. Analyst, 2018, 143(22):5317-5338. [11] Li W, Wang S, Zhou L, et al.An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue[J]. Talanta, 2019, 199:634-642. [12] Yuan B, Jiang X, Chen Y, et al.Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by Cell-SELEX[J]. Talanta, 2017, 170:56-62. [13] Li F, Lu J, Liu J, et al.A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer[J]. Nature Communications, 2017, 8(1):1390. [14] Pusuluri A, Krishnan V, Lensch V, et al.Treating tumors at low drug doses using an aptamer-peptide synergistic drug conjugate[J]. Angewandte Chemie International Edition, 2019, 58(5):1437-1441. [15] Zhao N, Pei SN, Qi J, et al.Oligonucleotide aptamer-drug conjug-ates for targeted therapy of acute myeloid leukemia[J]. Biomate-rials, 2015, 67:42-51. [16] Yang S, Wen J, Li H, et al.Aptamer-engineered natural killer cells for cell-specific adaptive immunotherapy[J]. Small, 2019, 15(22):e1900903. [17] Berezovski M, Musheev M, Drabovich A, et al.Non-SELEX selection of aptamers[J]. Journal of the American Chemical Society, 2006, 128(5):1410-1411. [18] Homann M, Göringer HU.Combinatorial selection of high affinity RNA ligands to live African trypanosomes[J]. Nucleic Acids Research, 1999, 27(9):2006-2014. [19] Daniels DA, Chen H, Hicke BJ, et al.A tenascin-C aptamer identified by tumor cell SELEX:Systematic evolution of ligands by exponential enrichment[J]. Proceedings of the National Academy of Sciences, 2003, 100(26):15416-15421. [20] Liu M, Yang T, Chen Z, et al.Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells[J]. Biomaterials Science, 2018, 6(12):3152-3159. [21] Tang Z, Parekh P, Turner P, et al.Generating aptamers for recognition of virus-infected cells[J]. Clinical Chemistry, 2009, 55(4):813-822. [22] Liu J, Liu H, Sefah K, et al.Selection of aptamers specific for adipose tissue[J]. PLoS One, 2012, 7(5):e37789. [23] Moreno MM, González VM.Advances on aptamers targeting plasmodium and trypanosomatids[J]. Current Medicinal Chemistry, 2011, 18(32):5003-5010. [24] Davis KA, Abrams B, Lin Y, et al.Staining of cell surface human CD4 with 2'-f-pyrimidine-containing rna aptamers for flow cytometry[J]. Nucleic Acids Research, 1998, 26(17):3915-3924. [25] Hu Y, Duan J, Zhan Q, et al.Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro[J]. PLoS One, 2012, 7(2):e31970. [26] Burchell JM, Mungul A, Taylor-Papadimitriou J.O-linked glycosylation in the mammary gland:Changes that occur during malignancy[J]. Journal of Mammary Gland Biology and Neoplasia, 2001, 6(3):355-364. [27] Morris KN, Jensen KB, Julin CM, et al.High affinity ligands from in vitro selection:Complex targets[J]. Proceedings of the National Academy of Sciences, 1998, 95(6):2902-2907. [28] Ababneh N, Alshaer W, Allozi O, et al.In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker[J]. Nucleic Acid Therapeutics, 2013, 23(6):401-407. [29] Elle IC, Karlsen KK, Terp MG, et al.Selection of LNA-containing DNA aptamers against recombinant human CD73[J]. Molecular BioSystems, 2015, 11(5):1260-1270. [30] Mallikaratchy P.Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens[J]. Molecules, 2017, 22(2):215. [31] Kaur H.Recent developments in cell-SELEX technology for aptamer selection[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2018, 1862(10):2323-2329. [32] Ohuchi SP, Ohtsu T, Nakamura Y.Selection of RNA aptamers against recombinant transforming growth factor-β type Ⅲ receptor displayed on cell surface[J]. Biochimie, 2006, 88(7):897-904. [33] Kim JW, Kim EY, Kim SY, et al.Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEX[J]. Molecules and Cells, 2014, 37(10):742-746. [34] Raddatz MSL, Dolf A, Endl E, et al.Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting[J]. Angew Chem Int Edi Engl, 2008, 47(28):5190-5193. [35] Kim EY, Kim JW, Kim WK, et al.Selection of aptamers for mature white adipocytes by cell SELEX using flow cytometry[J]. PLoS One, 2014, 9(5):e97747. [36] Avci-Adali M, Metzger M, Perle N, et al.Pitfalls of cell-systematic evolution of ligands by exponential enrichment(SELEX):Existing dead cells during in vitro selection anticipate the enrichment of specific aptamers[J]. Oligonucleotides, 2010, 20(6):317-323. [37] Hicke BJ, Marion C, Chang YF, et al.Tenascin-C aptamers are generated using tumor cells and purified protein[J]. Journal of Biological Chemistry, 2001, 276(52):48644-48654. [38] Zumrut HE, Ara MN, Fraile M, et al.Ligand-guided selection of target-specific aptamers:A screening technology for identifying specific aptamers against cell-surface proteins[J]. Nucleic Acid Therapeutics, 2016, 26(3):190-198. [39] Thiel WH, Bair T, Peek AS, et al.Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection[J]. PLoS One, 2012, 7(9):e43836. [40] Souza GR, Molina JR, Raphael RM, et al.Three-dimensional tissue culture based on magnetic cell levitation[J]. Nature Nanotechnology, 2010, 5(4):291-296. [41] Souza AG, Marangoni K, Fujimura PT, et al.3D cell-selex:Development of rna aptamers as molecular probes for PC-3 tumor cell line[J]. Exp Cell Res, 2016, 341(2):147-156. [42] Wang C, Zhang M, Yang G, et al.Single-stranded DNA aptamers that bind differentiated but not parental cells:Subtractive systematic evolution of ligands by exponential enrichment[J]. Journal of Biotechnology, 2003, 102(1):15-22. [43] Tan Y, Guo Q, Xie Q, et al.Single-walled carbon nanotubes(SWCNTs)-assisted cell-systematic evolution of ligands by exponential enrichment(cell-SELEX)for improving screening efficiency[J]. Analytical Chemistry, 2014, 86(19):9466-9472. [44] Bruno JG.In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection[J]. Biochemical and Biophysical Research Communications, 1997, 234(1):117-120. [45] Stoltenburg R, Reinemann C, Strehlitz B.FluMag-SELEX as an advantageous method for DNA aptamer selection[J]. Analytical and Bioanalytical Chemistry, 2005, 383(1):83-91. [46] Stoltenburg R, Nikolaus N, Strehlitz B.Capture-selex:Selection of DNA aptamers for aminoglycoside antibiotics[J]. Journal of Analytical Methods in Chemistry, 2012. doi:10.1155/2012/415697. [47] Gopinathan P, Hung LY, Wang CH, et al.Automated selection of aptamers against cholangiocarcinoma cells on an integrated microfluidic platform[J]. Biomicrofluidics, 2017, 11(4):044101. [48] Zhu Z, Song Y, Li C, et al.Monoclonal surface display selex for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Analytical Chemistry, 2014, 86(12):5881-5888. [49] Li SH, Xu H, Ding HM, et al.Identification of an aptamer targeting hnrnp a1 by tissue slide-based selex[J]. J Pathol, 2009, 218(3):327-336. [50] Wang H, Zhang Y, Yang H, et al.In vivo selex of an inhibitory nsclc-specific rna aptamer from pegylated rna library[J]. Molecular Therapy-Nucleic Acids, 2018, 10:187-198. [51] Cheng C, Chen YH, Lennox KA, et al.In vivo selex for identification of brain-penetrating aptamers[J]. Molecular Therapy-Nucleic Acids, 2013, 2:e67. [52] Chen L, He W, Jiang H, et al.In vivo selex of bone targeting aptamer in prostate cancer bone metastasis model[J]. International Journal of Nanomedicine, 2019, 14:149-159. [53] Civit L, Theodorou I, Frey F, et al.Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic xenograft mouse model[J]. Scientific Reports, 2019, 9(1):4976. [54] Mi J, Ray P, Liu J, et al.In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9[J]. Molecular Therapy-Nucleic Acids, 2016, 5(4):e315. [55] Li WM, Bing T, Wei JY, et al.Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells[J]. Biomaterials, 2014, 35(25):6998-7007. [56] 黄旭方. 基于细胞SELEX技术的MMP14特异性适配体筛选及双模态分子探针的构建与初步功能研究[D]. 西安:中国人民解放军空军军医大学, 2018. [57] Aptekar S, Arora M, Lawrence CL, et al.Selective targeting to glioma with nucleic acid aptamers[J]. PLoS One, 2015, 10(8):e0134957. [58] Rosenberg JE, Bambury RM, Van Allen EM, et al.A phase Ⅱ trial of AS1411(a novel nucleolin-targeted DNA aptamer)in metastatic renal cell carcinoma[J]. Investigational New Drugs, 2014, 32(1):178-187. [59] Huang R, Chen Z, Liu M, et al.The aptamers generated from HepG2 cells[J]. Science China Chemistry, 2017, 60(6):786-792. [60] Wu X, Zhao Z, Bai H, et al.DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition[J]. Theranostics, 2015, 5(9):985-994. [61] Shangguan D, Li Y, Tang Z, et al.Aptamers evolved from live cells as effective molecular probes for cancer study[J]. Proceedings of the National Academy of Sciences, 2006, 103(32):11838-11843. [62] Huang YF, Shangguan D, Liu H, et al.Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells[J]. Chembiochem, 2009, 10(5):862-868. [63] Sefah K, Tang ZW, Shangguan DH, et al.Molecular recognition of acute myeloid leukemia using aptamers[J]. Leukemia Official Journal of the Leukemia Society of America Leukemia Research Fund U K, 2009, 23(2):235-244. [64] Bayrac AT, Sefah K, Parekh P, et al.In vitro selection of DNA aptamers to glioblastoma multiforme[J]. ACS Chemical Neuroscience, 2011, 2(3):175-181. [65] Chen H, Medley C, Sefah K, et al.Molecular recognition of small-cell lung cancer cells using aptamers[J]. Chemmedchem, 2008, 3(6):991-1001. [66] Zhao Z, Xu L, Shi X, et al.Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells[J]. Analyst, 2009, 134(9):1808-1814. [67] Van Simaeys D, López-Colón D, Sefah K, et al.Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX[J]. PLoS One, 2010, 5(11):e13770. [68] He J, Wang J, Zhang N, et al.In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX[J]. Talanta, 2019, 194:437-445. [69] Wang L, Li P, Xiao X, et al.Generating lung-metastatic osteosarcoma targeting aptamers for in vivo and clinical tissue imaging[J]. Talanta, 2018, 188:66-73. [70] Raddatz MS, Dolf A, Endl E, et al.Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting[J]. Angewandte Chemie International Edition, 2008, 47(28):5190-5193. [71] Graham JC, Zarbl H.Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells[J]. PLoS One, 2012, 7(4):e36103. [72] Ohuchi SP, Ohtsu T, Nakamura Y.Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface[J]. Biochimie, 2006, 88(7):897-904. [73] Shangguan D, Meng L, Cao ZC, et al.Identification of liver cancer-specific aptamers using whole live cells[J]. Analytical Chemistry, 2008, 80(3):721-728. [74] Blank M, Weinschenk T, Priemer M, et al.Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen[J]. Journal of Biological Chemistry, 2001, 276(19):16464-16468. |
[1] | ZHANG Kun, YAN Chang, TIAN Xin-peng. Research Progress in Microbial Single Cell Separation Methods [J]. Biotechnology Bulletin, 2023, 39(9): 1-11. |
[2] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[3] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[4] | LIU Hao, MA Shi-jie, ZHOU Zhe-min, CUI Wen-jing. Improving the Activity of L-aspartate-a-decarboxylase from Corynebacterium jeikeium Through Semi-rational Design and Whole-cell Catalytic Synthesis of β-alanine [J]. Biotechnology Bulletin, 2023, 39(9): 281-290. |
[5] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[6] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[7] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[8] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[9] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[10] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[11] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[12] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[13] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[14] | ZHOU Wen-han, ZHENG Kang-ning, LI Yong-min. Stellera chamaejasme L. Inhibiting Cell Proliferation by Reducing YAP1 Expression in Hepatocellular Carcinoma [J]. Biotechnology Bulletin, 2023, 39(7): 316-324. |
[15] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||