Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (8): 136-143.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1185
Previous Articles Next Articles
HU Xiao-qian, ZHANG Ying-yi, LI Xin, YAN Hai-fang
Received:
2019-12-06
Online:
2020-08-26
Published:
2020-08-27
HU Xiao-qian, ZHANG Ying-yi, LI Xin, YAN Hai-fang. Research Progress of Remorin Protein in Plants[J]. Biotechnology Bulletin, 2020, 36(8): 136-143.
[1] Raffaele S, Artemis P, Sébastien M.The Remorin C-terminal Anchor was shaped by convergent evolution among membrane binding domains[J]. Plant Signaling & Behavior, 2013, 8(3):e23207. [2] Jacinto T, Farmer EE, Ryan CA.Purification of potato leaf plasma membrane protein pp34, a protein phosphorylated in response to oligogalacturonide signals for defense and development[J]. Plant Physiology, 1993, 103(4):1393. [3] Reymond P, Kunz B, Paul-Pletzer K.Cloning of a cDNA encoding a plasma membrane-associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins[J]. The Plant Cell, 1996, 8(12):2265-2276. [4] Raffaele S, Sébastien M, et al.Genome-wide annotation of remorins, a plant-specific protein family:evolutionary and functional perspectives[J]. Plant Physiol, 2007, 145(3):593-600. [5] Badawi MA, Agharbaoui Z, et al.Genome-wide identification and characterization of the wheat remorin(TaREM)family during cold acclimation[J]. Plant Genome, 2019, 12(2):1-22. [6] Bariola PA, Retelska D, Stasiak A, et al Remorins form a novel family of coiled coil- forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants[J]. Plant Molecular Biology, 2004, 55(4):579-594. [7] Checker VG, Khurana P.Molecular and functional characterization of mulberry EST encodingremorin(MiREM)involved in abiotic stress[J]. Plant Cell Reports, 2013, 32(11):1729-1741. [8] Raffaele S, Bayer E, Mongrand S.Upregulation of the plant protein remorin correlates with dehiscence and cell maturation:a link with the maturation of plasmodesmata?[J]. Plant Signaling & Behavior, 2009, 4(10):915-919. [9] Sasaki N, Eita T, Hiroshi N.Altered subcellular localization of a tobacco membrane raft-associated remorin protein by tobamovirus infection and transient expression of viral replication and movement proteins[J]. Frontiers in Plant Science, 2018, 9:619. [10] Gronnier J, Crowet JM, Habenstein B, et al.Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains[J]. eLife, 2017, 6:e26404. [11] Perraki A, Cacas JL, Crowet JM, et al.Plasma membrane localization of solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel c-terminal anchor and required for the restriction of potato virus X movement[J]. Plant Physiol, 2012, 160:624-637. [12] Tóth K, Stratil TF, Madsen EB, et al.Functional domain analysis of the Remorin protein LjSYMREM1 in Lotus japonicus[J]. PLoS One, 2012, 7(1):e30817. [13] Martinez D, Legrand A, Gronnier J, et al.Coiled-coil oligomerization controls nanodomain organization of the plasma membrane REMORINs[J]. Journal of Structural Biology, 2019, 206(1):12-19. [14] Raffaele S, Bayer E, et al.Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement[J]. The Plant Cell, 2009, 21(5):1541-1555. [15] Marín M, et al.Phosphorylation of intrinsically disordered regions in remorin proteins[J]. Front Plant Sci, 2012, 3:86. [16] Nambara E, et al.Protein farnesylation in plants:a greasy tale[J]. Current Opinion in Plant Biology, 1999, 2(5):388-392. [17] Mittag T, Kay LE, Forman-Kay JD.Protein dynamics and conformational disorder in moleular recognition[J]. J Mol Recognit, 2010, 23(2):105-116. [18] Brown CJ, Johnson AK, et al.Evolution and disorder[J]. Current Opinion in Structural Biology, 2011, 21(3):441-446. [19] Florian G, Gunawardena J, Mann M.PHOSIDA 2011:the posttranslational modification database[J]. Nucleic Acids Research, 2011, 39(Database issue):253-600. [20] Hunter T.The age of crosstalk:Phosphorylation, ubiquitination, and beyond[J]. Molecular Cell, 2008, 28(5):730-738. [21] Sonja R, Messerli G, Baerenfaller K, et al.Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks[J]. Plant Physiology, 2009, 150(2):889-903. [22] Tim X, Ouellet T, Miki BL.Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions[J]. Trends in Plant Science, 2002, 7(5):224-230. [23] Dissmeyer ND, Schnittger A.The age of protein kinases[J]. Methods in Molecular Biology, 2011, 779:7-52. [24] Stone JM, Walker JC.Plant protein kinase families and signal transduction[J]. Plant Physiology, 1995, 108(2):451-457. [25] Jarsch IK, Ott T.Perspectives on remorin proteins, membrane rafts, and their role during plant-microbe interactions[J]. Mol Plant Microbe Interact, 2011, 24(1):7-12. [26] Macarena M, Thallmair V, Ott T.The intrinsically disordered N-terminal region of AtREM1. 3 remorin protein mediates protein-protein interactions[J]. Journal of Biological Chemistry, 2012, 287(47):39982. [27] Konrad SS, Popp C, Stratil TF, et al.S-acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains[J]. New Phytologist, 2014, 203(3):758-769. [28] Khoza TG, et al.Identification of candidate ergosterol-responsive proteins associated with the plasma membrane of Arabidopsis thaliana[J]. Int J Mol Sci, 2019, 20(6):1302. [29] Li SF, Su X, Zhang B, et al.Molecular cloning and functional analysis of the populus deltoides remorin gene PdREM[J]. Tree Physiology, 2013, 33(10):1111-1121. [30] Cai J, Qin G, Chen T et al. The mode of action of remorin1 in regulating fruit ripening at transcriptional and post-transcriptional levels[J]. New Phytologist, 2018, 219(4):1406-1420. [31] Gui J, Zheng S, Liu C, et al.OsREM4. 1 Interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice[J]. Developmental Cell, 2016, 38(2):201-213. [32] Li X, Lu DT, Maurel C, et al.Probing plasma membrane dynamics at the single-molecule level[J]. Trends in Plant Science, 2013, 18(11):617-624. [33] Bücherl CA, Jarsch IK, et al.Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains[J]. eLife, 2017, 6:e25114. [34] Lucau-Danila A, Laborde L, Legrand S, et al.Identification of novel genes potentially involved in somatic embryogenesis in chicory(Cichorium intybus L.)[J]. BMC Plant Biology, 2010, 10(1):122. [35] 姚晓云, 李清, 刘进, 等. 不同环境下水稻株高和穗长的QTL分析[J]. 中国农业科学, 2015, 48(3):407-414. Yao XY, Li Q,Liu J,et al.Dissection of QTLs for plant height and panicle length traits in rice under different environment[J].Scientia Agricultura Sinica, 2015, 48(3):407-414. [36] Liu EB, Liu Y, Wu G, et al.Identification of a candidate gene for panicle length in rice(Oryza sativa L.)via association and linkage analysis[J]. Frontiers in Plant Science, 2016, 7:596. [37] Hemsley PA, Weimar T, Lilley KS, et al.A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis[J]. New Phytologist, 2013, 197(3):805-814. [38] Bharadwaj M, et al.Myelin P0 glycoprotein and a synthetic peptide containing the palmitoylation site are both autoacylated[J]. Journal of Neurochemistry, 2010, 65(4):1805-1815. [39] Sanja B, Blanc M, et al.What does S-palmitoylation do to membr-ane proteins?[J]. FEBS Journal, 2013, 280(12):2766-2774. [40] Gui J, et al.Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance[J]. Plant Physiology, 2014, 166(3):1463-1478. [41] Gui J, Zheng S, et al.Grain setting defect1(GSD1)func-tion in rice depends on S-acylation and interacts with actin 1(Os-ACT1)at its C-terminal[J]. Frontiers in Plant Science, 2015, 6:804. [42] Oldroyd GE, Downie JA.Coordinating nodule morphogenesis with rhizobial. infection in legumes[J]. Annual Review of Plant Biology, 2008, 59(1):519-546. [43] Lévy J, Bres C, Geurts R, et al.A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science, 2004, 303(5662):1361-1364. [44] Ovchinnikova E, Journet EP, et al.IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp.[J]. Molecular Plant-Microbe Interactions, 2011, 24(11):1333. [45] Limpens E, Mirabella R, Fedorova E, et al.Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2[J]. Proc Natl Acad Sci USA, 2005, 102(29):10375-10380. [46] Capoen W, Goormachtig S, De Rycke R, et al.SrSymRK, a plant receptor essential for symbiosome formation[J]. Proc Natl Acad Sci USA, 2005, 102(29):10369-10374. [47] Qiao Z, Brechenmacher L, et al.The GmFWL1(FW2-2-like)nodulation gene encodes a plasma membrane microdomain-associ-ated protein[J]. Plant Cell Environ, 2017, 40(8):1442-1455. [48] Cai J, Qin G, Qin T, et al.Molecular mechanisms of remorin1 to regulate fruit ripening and resistance[C]. Abstract of papers presented at the 85th annual meeting of the Botanical Society of China(1993-2018), 2018. [49] Yang SF, et al.Ethylene biosynthesis and its regulation in higher plants[J]. Annu Rev Plant Physiol, 2003, 35(1):155-189. [50] Clouse SD.Brassinosteroid/abscisic acid antagonism in balancing growth and stress[J]. Dev Cell, 2016, 38(2):118-120. [51] Priti K.Brassinosteroid-mediated stress responses[J]. Journal of Plant Growth Regulation, 2003, 22(4):289-297. [52] Yue J, et al.A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet(Setaria italica)promotes high salt tolerance in transgenic Arabidopsis[J]. PLoS One, 2014, 9(6):e100772. [53] Byun MY, Lee J, Cui LH, et al.Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants[J]. Plant Science, 2015, 236:61-74. [54] Li B, Zhang C, Cao B, et al.Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids[J]. Amino Acids, 2012, 43(6):2469-2480. [55] Perraki A, Binaghi M, Mecchia MA, et al.StRemorin1. 3 hampers potato virus X TGBp1 ability to increase plasmodesmata permea-bility, but does not interfere with its silencing suppressor activity[J]. FEBS Letters, 2014, 588:1699-1705. [56] Wang B, Hajano JU, Ren Y, et al.iTRAQ-based quantitative proteomics analysis of rice leaves infected by rice stripe virus reveals several proteins involved in symptom formation[J]. Virology Journal, 2015, 12(1):99. [57] Fu S, Xu Y, Li CY, et al.Rice stripe virus interferes with S-acylation of remorin and induces its autophagic degradation to facilitate virus infection[J]. Molecular Plant, 2018, 11(2):269-287. [58] Scholthof HB, Alvarado VY, Vega-Arreguin JC, et al.Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana[J]. Plant Physiology, 2011, 156(3):1548-1555. [59] Voinnet O, Lederer C, Baulcombe DC.A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana[J]. Cell, 2000, 103(1):157-167. [60] Bozkurt TO, Richardson A, Dagdas YF, et al.The plant membrane-associated REMORIN1. 3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans[J]. Plant Physiology, 2014, 165(3):1005. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[5] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[8] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[9] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[10] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[11] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[12] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[13] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[14] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[15] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||