Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 186-195.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0197
Previous Articles Next Articles
ZHONG Jian-feng1(), LI Xing-kui2, XU Chong-xin1, ZHANG Xiao1, LIU Xian-jin1()
Received:
2021-02-20
Online:
2021-10-26
Published:
2021-11-12
Contact:
LIU Xian-jin
E-mail:jianfengzhong@jaas.ac.cn;jaasliu@jaas.ac.cn
ZHONG Jian-feng, LI Xing-kui, XU Chong-xin, ZHANG Xiao, LIU Xian-jin. Biological Activity of Anti-idiotypic Single Chain Fragment Variable Antibody Against Cry1B by Site-directed Mutagenesis[J]. Biotechnology Bulletin, 2021, 37(10): 186-195.
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
LMB3 | CAGGAAACAGCTATGAC |
pHENseq | CTATGCGGCCCCATTCA |
NNK_VH | CCCCAGTAGTCAAANNKNNKACCAGATTTCGC |
NNK_VL | CTCCTGATCTATNNKGCATCCNNKTTGCAAAGTGG |
Table 1 Primer sequences for the construction of site-directed mutagenesis library
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
LMB3 | CAGGAAACAGCTATGAC |
pHENseq | CTATGCGGCCCCATTCA |
NNK_VH | CCCCAGTAGTCAAANNKNNKACCAGATTTCGC |
NNK_VL | CTCCTGATCTATNNKGCATCCNNKTTGCAAAGTGG |
Fig. 2 Three-dimensional structure models of scFv-C7 and CmAPN A:Three-dimensional structure model of scFv-C7. B:3D structure model of CmAPN. C:Ramachandran plot for scFv-C7 model D:Ramachandran plot for CmAPN model
Fig. 3 Molecular docking and the interaction hot spot analysis between scFv-C7 and CmAPN A:Molecular docking of scFv-C7 and CmAPN. B:Predicted hot spot residues on binding interface from scFv-C7
Fig. 4 Saturation mutagenesis of hot spot amino acids on docking interface based on scFv-C7 A:Amplification of VH mega-primer. B:Full-length amplification of scFv-C7 with H-CDR3 saturation mutagenesis site. C:Amplification of VL mega-primer. D:Full-length amplification of scFv-C7 with H-CDR3 and L-CDR2 saturation mutagenesis sites. M:DNA marker. 1:VH mega-primer. 2:PCR product with H-CDR3 saturation mutagenesis. 3:VL mega-primer. 4:PCR product with H-CDR3 and L-CDR2 saturation mutagenesis sites
Fig.5 Verification of correction from constructed satura-tion mutant antibody library M:DNA marker. CK:Blank control. 1-10:Ten pieces of randomly picked monoclones
富集轮数 Enriching rounds | 包被蛋白 Coating antigen protein | 包被浓度 Coating antigen concentration /(μg·mL-1) | 投入量 Input | 产出量 Output | 产出/投入 Output/Input |
---|---|---|---|---|---|
1 | BBMV | 100 | 2.0×106 | 6.0×102 | 3.0×10-4 |
2 | BBMV | 50 | 1.8×106 | 3.5×103 | 1.9×10-3 |
3 | BBMV | 25 | 2.1×106 | 7.5×103 | 3.6×10-3 |
Table 2 Enrichment and screening of scFv-C7 mutant antibody library
富集轮数 Enriching rounds | 包被蛋白 Coating antigen protein | 包被浓度 Coating antigen concentration /(μg·mL-1) | 投入量 Input | 产出量 Output | 产出/投入 Output/Input |
---|---|---|---|---|---|
1 | BBMV | 100 | 2.0×106 | 6.0×102 | 3.0×10-4 |
2 | BBMV | 50 | 1.8×106 | 3.5×103 | 1.9×10-3 |
3 | BBMV | 25 | 2.1×106 | 7.5×103 | 3.6×10-3 |
Fig.7 Gene cloning(A)and amino acid sequence alignment(B)of mutant scFv antibodies M:2 000 bp DNA marker. CK:Blank control. 1- 4 refers to 3A5,3G2,2F7 and C7 gene,respectively
样品 Samples | 校正死亡率Corrected mortality/% | ||
---|---|---|---|
24 h | 48 h | 72 h | |
CK- | 0.00 ±0.00c | 0.00 ±0.00d | 4.44±1.11d |
CK+ | 35.56±2.94a | 62.22±1.11a | 76.67±5.09a |
C7 | 25.56±2.94b | 27.78±1.11c | 42.22±2.94c |
Y124G | 21.11±2.22b | 34.44±1.11b | 56.67±1.92b |
Table 3 Bioassay of mutant scFv antibodies against C. medinalis larvae
样品 Samples | 校正死亡率Corrected mortality/% | ||
---|---|---|---|
24 h | 48 h | 72 h | |
CK- | 0.00 ±0.00c | 0.00 ±0.00d | 4.44±1.11d |
CK+ | 35.56±2.94a | 62.22±1.11a | 76.67±5.09a |
C7 | 25.56±2.94b | 27.78±1.11c | 42.22±2.94c |
Y124G | 21.11±2.22b | 34.44±1.11b | 56.67±1.92b |
[1] |
Bravo A, Gómez I, Porta H, et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity[J]. Microb Biotechnol, 2013, 6(1):17-26.
doi: 10.1111/j.1751-7915.2012.00342.x URL |
[2] |
Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity[J]. Microbiol Mol Biol Rev, 2007, 71(2):255-281.
doi: 10.1128/MMBR.00034-06 URL |
[3] |
Jurat-Fuentes JL, Crickmore N. Specificity determinants for Cry insecticidal proteins:Insights from their mode of action[J]. J Invertebr Pathol, 2017, 142:5-10.
doi: S0022-2011(16)30103-3 pmid: 27480404 |
[4] | Heckel DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective[J]. Arch Insect Biochem Physiol, 2020, 104(2):e21673. |
[5] |
Knight PJ, Carroll J, Ellar DJ. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin[J]. Insect Biochem Mol Biol, 2004, 34(1):101-112.
doi: 10.1016/j.ibmb.2003.09.007 URL |
[6] |
Luo K, Sangadala S, Masson L, et al. The Heliothis virescens 170 kDa aminopeptidase functions as “Receptor A” by mediating specific Bacillus thuringiensis Cry1A δ-endotoxin binding and pore formation[J]. Insect Biochem Mol Biol, 1997, 27(8/9):735-743.
doi: 10.1016/S0965-1748(97)00052-0 URL |
[7] |
Simpson RM, Newcomb RD. Binding of Bacillus thuringiensis delta-endotoxins Cry1Ac and Cry1Ba to a 120-kDa aminopeptidase-N of Epiphyas postvittana purified from both brush border membrane vesicles and baculovirus-infected Sf9 cells[J]. Insect Biochem Mol Biol, 2000, 30(11):1069-1078.
doi: 10.1016/S0965-1748(00)00082-5 URL |
[8] | 刘贤金, 徐重新, 张霄, 等. 一种人源抗虫基因及其编码的抗Cry1B毒素独特型单链抗体与应用:中国,201410037175.X[P]. 2015-11-18. |
Liu XJ, Xu CX, Zhang X, et al. The anti-Cry1B toxin idiotype single-chain antibody of a kind of people source anti insect gene and coding thereof and application: China, 201410037175. X[P]. 2015-11-18. | |
[9] |
Bird RE, Walker BW. Single chain antibody variable regions[J]. Trends Biotechnol, 1991, 9(1):132-137.
doi: 10.1016/0167-7799(91)90044-I URL |
[10] |
Perchiacca JM, Tessier PM. Engineering aggregation-resistant antibodies[J]. Annu Rev Chem Biomol Eng, 2012, 3(1):263-286.
doi: 10.1146/chembioeng.2012.3.issue-1 URL |
[11] |
Qiao C, Lv M, Li X, et al. Affinity maturation of antiHER2 monoclonal antibody MIL5 using an epitope-specific synthetic phage library by computational design[J]. J Biomol Struct Dyn, 2013, 31(5):511-521.
doi: 10.1080/07391102.2012.706073 URL |
[12] |
Sheedy C, Roger MacKenzie C, Hall JC. Isolation and affinity maturation of hapten-specific antibodies[J]. Biotechnol Adv, 2007, 25(4):333-352.
doi: 10.1016/j.biotechadv.2007.02.003 URL |
[13] |
Barderas R, Desmet J, Timmerman P, et al. Affinity maturation of antibodies assisted by in silico modeling[J]. PNAS, 2008, 105(26):9029-9034.
doi: 10.1073/pnas.0801221105 pmid: 18574150 |
[14] |
Zhang J, Valianou M, Simmons H, et al. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens[J]. Faseb J, 2013, 27(2):581-589.
doi: 10.1096/fsb2.v27.2 URL |
[15] |
Kuntal BK, Aparoy P, Reddanna P. EasyModeller:a graphical interface to MODELLER[J]. BMC Res Notes, 2010, 3:226.
doi: 10.1186/1756-0500-3-226 URL |
[16] | Schrödingerllc. The PyMOL molecular graphics system, Version 1. 3r1[M]. Portland, Oregon, USA: Schrödinger, LLC, 2010. |
[17] |
Barik S. Mutagenesis and gene fusion by megaprimer PCR[J]. Methods Mol Biol, 1997, 67:173-182.
pmid: 9031141 |
[18] |
Séraphin B, Kandels-Lewis S. An efficient PCR mutagenesis strategy without gel purificiation step that is amenable to automation[J]. Nucleic Acids Res, 1996, 24(16):3276-3277.
pmid: 8774913 |
[19] |
Wolfersberger M, Luethy P, Maurer A, et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly(Pieris brassicae)[J]. Comp Biochem Physiol Part A:Physiol, 1987, 86(2):301-308.
doi: 10.1016/0300-9629(87)90334-3 URL |
[20] | 焦凌霞, 徐茜茜, 刘媛, 等. 人源化抗苏云金芽孢杆菌Cry1Ab毒素单域抗体的筛选及活性鉴定[J]. 中国食品学报, 2017, 17(10):268-273. |
Jiao LX, Xu XX, Liu Y, et al. Screening and identification of humanized single domain antibodies(sdAbs)against Bacillus thuringiensis Cry1Ab toxin[J]. J Chin Inst Food Sci Technol, 2017, 17(10):268-273. | |
[21] |
Malia TJ, Obmolova G, Almagro JC, et al. Crystal structure of human germline antibody 3-23/B3[J]. Mol Immunol, 2011, 48(12/13):1586-1588.
doi: 10.1016/j.molimm.2011.04.020 URL |
[22] |
James LC, Jones PC, McCoy A, et al. Β-edge interactions in a pentadecameric human antibody vκ domain[J]. J Mol Biol, 2007, 367(3):603-608.
pmid: 17292396 |
[23] |
Wong AH, Zhou D, Rini JM. The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing[J]. J Biol Chem, 2012, 287(44):36804-36813.
doi: 10.1074/jbc.M112.398842 URL |
[24] |
Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation[J]. Nat Biotechnol, 2007, 25(10):1171-1176.
pmid: 17891135 |
[25] |
Clark LA, Boriack-Sjodin PA, Eldredge J, et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design[J]. Protein Sci, 2006, 15(5):949-960.
doi: 10.1110/ps.052030506 URL |
[26] |
Wen K, Nölke G, Schillberg S, et al. Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones[J]. Anal Bioanal Chem, 2012, 403(9):2771-2783.
doi: 10.1007/s00216-012-6062-z URL |
[27] |
Tian J, Wang P, Gao S, et al. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a Glycine to proline mutation[J]. Febs J, 2010, 277(23):4901-4908.
doi: 10.1111/j.1742-4658.2010.07895.x URL |
[28] |
Boozer C, Kim G, Cong SX, et al. Looking towards label-free biomolecular interaction analysis in a high-throughput format:a review of new surface plasmon resonance technologies[J]. Curr Opin Biotechnol, 2006, 17(4):400-405.
doi: 10.1016/j.copbio.2006.06.012 URL |
[29] |
McDonnell JM. Surface plasmon resonance:towards an understanding of the mechanisms of biological molecular recognition[J]. Curr Opin Chem Biol, 2001, 5(5):572-577.
pmid: 11578932 |
[30] |
Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors:review[J]. Sensor Actuat B:Chem, 1999, 54(1/2):3-15.
doi: 10.1016/S0925-4005(98)00321-9 URL |
[31] |
Zhuang X, Stahl SJ, Watts NR, et al. A cell-penetrating antibody fragment against HIV-1 Rev has high antiviral activity:characterization of the paratope[J]. J Biol Chem, 2014, 289(29):20222-20233.
doi: 10.1074/jbc.M114.581090 URL |
[32] |
Richter A, Eggenstein E, Skerra A. Anticalins:exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins[J]. FEBS Lett, 2014, 588(2):213-218.
doi: 10.1016/j.febslet.2013.11.006 pmid: 24239535 |
[33] | 李敏, 郭美琪, 相伟芳, 等. 分子对接技术在昆虫化学感受研究中的应用进展[J]. 植物保护, 2019, 45(5):121-127. |
Li M, Guo MQ, Xiang WF, et al. Research progress in molecular docking in insect chemosense[J]. Plant Prot, 2019, 45(5):121-127. |
[1] | HAN Hui, ZHANG Jian, REN Yu-hong. Molecular Modification of the Short-chain Dehydrogenase Lvchun and Its Application in the Synthesis of Chloromycetin [J]. Biotechnology Bulletin, 2023, 39(4): 81-92. |
[2] | XU Lin-na, HU Meng-ke, TONG Wen-yan, LI Fen. Effects of T1084d and T1084A Point Mutations in the NtTkr Tail of Nicotiana tabacum on Coiled-helix Structure and Interaction with Target Proteins [J]. Biotechnology Bulletin, 2019, 35(5): 64-69. |
[3] | YU Shuang, LI Shuai, LI Hai-tao, LIU Rong-mei, GAO Ji-guo. Creation of Chimeric Protein Vip3AaAdAa in Bacillus thuringiensis and Analysis of Its Insecticidal Activity [J]. Biotechnology Bulletin, 2019, 35(4): 51-56. |
[4] | WANG Liu-yue, LI Hui-mei, MA Meng-qi, LIANG Ming-xing, HE Ru-yang, CHEN Hua-bo. Improve the Site-directed Mutagenesis Efficiency of Overlap Extension PCR by Outboard-primers [J]. Biotechnology Bulletin, 2019, 35(12): 196-202. |
[5] | HUA Chen, LI Xin-xin, TU Tao, YANG Hong, LUO Hui-ying, CHEN Jia-ming, YAO Bin, BAI Ying-guo, PENG Shu-chuan. Improving the Thermal Stability of Lactate Oxidase by ETSS [J]. Biotechnology Bulletin, 2018, 34(8): 144-150. |
[6] | CHEN Shao-wei, WU Cheng, SU Yue-hua, CAI Bin-bin, XIE Pan-pan, YANG Mei. Cloning and Functional Identification of the 5' flanking Region of the aiiA Gene from Bacillus thuringiensis [J]. Biotechnology Bulletin, 2018, 34(11): 136-143. |
[7] | ZENG Jing, GUO Jian-jun, YUAN Lin, YANG Gang, CHEN Jun. Optimization of the Thermal Activity and Stability of Hyperthermophilic α-amylase ApkA [J]. Biotechnology Bulletin, 2017, 33(8): 192-198. |
[8] | ZHANG Yue, LI Hai-tao, LIU Rong-mei, GAO Ji-guo. Cloning,Expression,and Insecticidal Activities of Gene cry2Ab34 from Bacillus thuringiensis [J]. Biotechnology Bulletin, 2017, 33(4): 185-190. |
[9] | Xu Man, Jiang Jian, Shu Changlong, Zhang Jie, Song Fuping. Creation of Cry1Ab/Cry1Ah Hybrid Proteins and Its Functional Analysis [J]. Biotechnology Bulletin, 2015, 31(9): 91-96. |
[10] | Liu Song, Lu Xinyao, Zhou Jingwen, Du Guocheng, Chen Jian. Research Advance on the Structure, Molecular Modification, and Fermentation of Lipoxygenases [J]. Biotechnology Bulletin, 2015, 31(12): 34-41. |
[11] | Yin Cui, Zhang Junling, Shi Zhiyi, Sun Wenhui, Sun Jinjin. The Construction and Identification of Dual-luciferase Reporter Plasmids Used in miRNA Target Detection [J]. Biotechnology Bulletin, 2015, 31(12): 180-185. |
[12] | Wu Zhijie, Wu Geng, Tang Hongzhi, Xu Ping. Monocrystal Culture and Crystallization Conditions Optimization of HspB from Pseudomonas putida [J]. Biotechnology Bulletin, 2015, 31(11): 236-242. |
[13] | He Haibo,Zhong Juan,Yang Jie,Zhou Jinyan,Tan Hong. Screening of a Fungus with Insecticidal Activity and Measure of the Stability of Its Bioactive Compound [J]. Biotechnology Bulletin, 2014, 0(9): 109-113. |
[14] | He Baonan, Li Haitao,Liu Rongmei,Wang Bo, Gao Jiguo. Identification,Expression and Insecticidal Activity Analysis of cry Genes from Bacillus thuringiensis V4 [J]. Biotechnology Bulletin, 2014, 0(9): 125-130. |
[15] | Pang Hao, Chen Yan, Wu Qianqian, Liu Chunyu, Guo Yuan, Lin Lihua, Huang Ribo. Exploring and Function Characteristics of Exo-1,4-β-D-glucanase CelB Gene of Bacillus licheniformis [J]. Biotechnology Bulletin, 2013, 0(9): 151-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||