Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 141-150.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0112
Previous Articles Next Articles
CHEN Ting1,2(), XIE Mei-ying3, WEI Li-min1, OUYANG Kun2, CHENG Xiao1(), ZHANG Yong-liang2()
Received:
2021-01-28
Online:
2021-12-26
Published:
2022-01-19
Contact:
CHENG Xiao,ZHANG Yong-liang
E-mail:allinchen@scau.edu.cn;21739942@qq.com;zhangyl@scau.edu.cn
CHEN Ting, XIE Mei-ying, WEI Li-min, OUYANG Kun, CHENG Xiao, ZHANG Yong-liang. Inhibitory Effects of Porcine Milk-derived Exosome on Porcine Epidemic Diarrhea Virus[J]. Biotechnology Bulletin, 2021, 37(12): 141-150.
Gene | Primer sequence(5'-3') |
---|---|
ORF3-F | CGGGCTTCGTTTAGTCTGCT |
ORF3-R | GATGTAATGGTCGCCACCTTCT |
N protein-F | AAAACGGGTGCCATTATCTCT |
N protein-R | CCATTTGCTGGTCCTTATTCC |
M protein-F | TCCCGTTGATGAGGTGATTG |
M protein-R | AAGGATGCTGAAAGCGAAAA |
RNA polymerase-F | GACCGCAGGCTATCCTTTGA |
RNA polymerase-R | GCTCTATCGCACTTTGGGTAATC |
spike protein-F | GATGACATTTATTCCCGACTGG |
spike polymerase-R | GCTGAGATTGCGATTTGACG |
S protein-F | GCAGTAATTCCTCAGATCCTC |
S protein-R | GTAGTGTCAGATGCAATGAGG |
E protein-F | GGCTCAGAGCAAGAGAGGTATCC |
E protein-R | GGTCTCAAACATGATCTGAGTCATCT |
NF-Kb-F | CCAGCCCTATCCCTTTACGC |
NF-Kb-R | GCCTCTGTCAGTGTCCCTTCC |
IFN-F | GCAACCAGGTCCAGAAGGC |
IFN-R | GACCTAGTCGTCGAGTCCC |
IRF-3-F | GCACTCACCGTCGTCATTC |
IRF-3-R | CAGAAAAGGCCGTGGAAATA |
p-APN-F | GGATTGTTCCCATCTCATCTATT |
p-APN-R | TTTTGGCGTAGCCTGCT |
Table 1 Primer sequences
Gene | Primer sequence(5'-3') |
---|---|
ORF3-F | CGGGCTTCGTTTAGTCTGCT |
ORF3-R | GATGTAATGGTCGCCACCTTCT |
N protein-F | AAAACGGGTGCCATTATCTCT |
N protein-R | CCATTTGCTGGTCCTTATTCC |
M protein-F | TCCCGTTGATGAGGTGATTG |
M protein-R | AAGGATGCTGAAAGCGAAAA |
RNA polymerase-F | GACCGCAGGCTATCCTTTGA |
RNA polymerase-R | GCTCTATCGCACTTTGGGTAATC |
spike protein-F | GATGACATTTATTCCCGACTGG |
spike polymerase-R | GCTGAGATTGCGATTTGACG |
S protein-F | GCAGTAATTCCTCAGATCCTC |
S protein-R | GTAGTGTCAGATGCAATGAGG |
E protein-F | GGCTCAGAGCAAGAGAGGTATCC |
E protein-R | GGTCTCAAACATGATCTGAGTCATCT |
NF-Kb-F | CCAGCCCTATCCCTTTACGC |
NF-Kb-R | GCCTCTGTCAGTGTCCCTTCC |
IFN-F | GCAACCAGGTCCAGAAGGC |
IFN-R | GACCTAGTCGTCGAGTCCC |
IRF-3-F | GCACTCACCGTCGTCATTC |
IRF-3-R | CAGAAAAGGCCGTGGAAATA |
p-APN-F | GGATTGTTCCCATCTCATCTATT |
p-APN-R | TTTTGGCGTAGCCTGCT |
[1] | 郭世栋, 穆娟. 仔猪流行性腹泻的诊治[J]. 饲料与畜牧, 2017(20):57, 59. |
Guo SD, Mu Mu. Diagnosis and treatment of porcine epidemic diarrhea[J]. Feed and Husbandry, 2017(20):57, 59. | |
[2] | 郭效珍. PEDV感染vero细胞的蛋白质组学分析及诱导细胞自噬的机制研究[D]. 武汉:华中农业大学, 2017. |
Guo XZ. Proteomics and molecular mechanisms of autophagy in PEDV-infected vero cells[D]. Wuhan:Huazhong Agricultural University, 2017. | |
[3] | van Niel G, Porto-Carreiro I, Simoes S, et al. Exosomes:a common pathway for a specialized function[J]. J Biochem, 2006, 140(1):13-21. |
[4] |
Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E, et al. Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples[J]. Proteomics Clin Appl, 2010, 4(4):416-425.
doi: 10.1002/prca.v4:4 URL |
[5] | Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, Chapter 3:Unit 3. 22. |
[6] |
Raposo G, Stoorvogel W. Extracellular vesicles:exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4):373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871 |
[7] |
Hata T, Murakami K, Nakatani H, et al. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs[J]. Biochem Biophys Res Commun, 2010, 396(2):528-533.
doi: 10.1016/j.bbrc.2010.04.135 URL |
[8] |
Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes:emerging roles in cell and tissue polarity[J]. Trends Cell Biol, 2008, 18(5):199-209.
doi: 10.1016/j.tcb.2008.03.002 pmid: 18396047 |
[9] |
Rani P, Vashisht M, Golla N, et al. Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro[J]. J Funct Foods, 2017, 34:431-439.
doi: 10.1016/j.jff.2017.05.009 URL |
[10] | Lonnerdal B, Du XG, Liao YL, et al. Human milk exosomes resist digestion in vitro and are internalized by human intestinal cells[J]. FASEB J, 2015, 29(S1):1213. |
[11] |
Chen T, Xie MY, Sun JJ, et al. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells[J]. Sci Rep, 2016, 6:33862.
doi: 10.1038/srep33862 URL |
[12] |
Hock A, Miyake H, Li B, et al. Breast milk-derived exosomes promote intestinal epithelial cell growth[J]. J Pediatr Surg, 2017, 52(5):755-759.
doi: 10.1016/j.jpedsurg.2017.01.032 URL |
[13] | Zhang QZ, Ke HZ, Blikslager A, et al. Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling[J]. J Virol, 2018, 92(4):e01677-17. |
[14] |
Shen Z, Wang G, Yang YL, et al. A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence[J]. J Biol Chem, 2019, 294(37):13606-13618.
doi: 10.1074/jbc.RA119.009713 URL |
[15] |
Zhang QZ, Ma JY, Yoo D. Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion[J]. Virology, 2017, 510:111-126.
doi: 10.1016/j.virol.2017.07.009 URL |
[16] |
成温玉, 白云, 贾怀杰, 等. 猪流行性腹泻病毒蛋白拮抗宿主天然免疫应答的研究进展[J]. 生物技术通报, 2020, 36(12):229-238.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0436 |
Cheng WY, Bai Y, Jia HJ, et al. Research progress on proteins of PEDV antagonizing host innate immune responses[J]. Biotechnol Bull, 2020, 36(12):229-238. | |
[17] | 曹丽艳. 猪流行性腹泻病毒感染猪小肠上皮细胞抑制IFN-β产生及激活NF-κB机理研究[D]. 哈尔滨:东北农业大学, 2015. |
Cao LY. The mechanism by which porcine epidemic diarrhea virus inhibits interferon-β production and activates NF-κB in porcine intestinal epithelial cells[D]. Harbin:Northeast Agricultural University, 2015. | |
[18] |
Li F. Structure, function, and evolution of coronavirus spike proteins[J]. Annu Rev Virol, 2016, 3(1):237-261.
doi: 10.1146/virology.2016.3.issue-1 URL |
[19] | Yang LJ, Xu JY, Guo LJ, et al. Porcine epidemic diarrhea virus-induced epidermal growth factor receptor activation impairs the antiviral activity of type I interferon[J]. J Virol, 2018, 92(8):e02095-17. |
[20] |
Chen YF, Zhang ZB, Li J, et al. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virol J, 2018, 15(1):170.
doi: 10.1186/s12985-018-1078-4 URL |
[21] |
Samuel CE. Antiviral actions of interferons[J]. Clin Microbiol Rev, 2001, 14(4):778-809, table of contents.
pmid: 11585785 |
[22] |
Ding Z, Fang L, Jing H, et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1[J]. J Virol, 2014, 88(16):8936-8945.
doi: 10.1128/JVI.00700-14 URL |
[23] |
Guo LJ, Luo XL, Li R, et al. Porcine epidemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1[J]. J Virol, 2016, 90(18):8281-8292.
doi: 10.1128/JVI.01091-16 URL |
[24] |
Sun M, Ma J, Yu Z, et al. Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways[J]. Vet Res, 2017, 48(1):44.
doi: 10.1186/s13567-017-0449-y URL |
[25] |
Xu XG, Zhang HL, Zhang Q, et al. Porcine epidemic diarrhea virus E protein causes endoplasmic Reticulum stress and up-regulates interleukin-8 expression[J]. Virol J, 2013, 10:26.
doi: 10.1186/1743-422X-10-26 URL |
[26] |
Xu XG, Zhang HL, Zhang Q, et al. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells[J]. Acta Virol, 2015, 59(3):265-275.
pmid: 26435150 |
[27] |
Kaewborisuth C, He QG, Jongkaewwattana A. The accessory protein ORF3 contributes to porcine epidemic diarrhea virus replication by direct binding to the spike protein[J]. Viruses, 2018, 10(8):399.
doi: 10.3390/v10080399 URL |
[28] |
Ye S, Li Z, Chen F, et al. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV[J]. Virus Genes, 2015, 51(3):385-392.
doi: 10.1007/s11262-015-1257-y URL |
[29] |
Si FS, Hu XX, Wang CY, et al. Porcine Epidemic Diarrhea Virus(PEDV)ORF3 Enhances Viral Proliferation by Inhibiting Apoptosis of Infected Cells[J]. Viruses, 2020, 12(2):214.
doi: 10.3390/v12020214 URL |
[30] |
Meng F, Suo S, Zarlenga DS, et al. A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry[J]. Virology, 2014, 456/457:20-27.
doi: 10.1016/j.virol.2014.01.010 URL |
[31] |
Shan Z, Yin J, Wang Z, et al. Identification of the functional domain of the porcine epidemic diarrhoea virus receptor[J]. J Gen Virol, 2015, 96(9):2656-2660.
doi: 10.1099/vir.0.000211 URL |
[32] |
Park JE, Park ES, Yu JE, et al. Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus[J]. Virus Res, 2015, 197:108-115.
doi: 10.1016/j.virusres.2014.12.024 URL |
[33] |
Wu J, Gao F, Xu T, et al. CLDN1 induces autophagy to promote proliferation and metastasis of esophageal squamous carcinoma through AMPK/STAT1/ULK1 signaling[J]. J Cell Physiol, 2020, 235(3):2245-2259.
doi: 10.1002/jcp.v235.3 URL |
[34] |
Mahati S, Xiao L, Yang Y, et al. miR-29a suppresses growth and migration of hepatocellular carcinoma by regulating CLDN1[J]. Biochem Biophys Res Commun, 2017, 486(3):732-737.
doi: 10.1016/j.bbrc.2017.03.110 URL |
[35] |
Pope JL, Ahmad R, Bhat AA, et al. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis[J]. Mol Cancer, 2014, 13:167.
doi: 10.1186/1476-4598-13-167 URL |
[36] |
Eftang LL, Esbensen Y, Tannæs TM, et al. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival[J]. BMC Cancer, 2013, 13:586.
doi: 10.1186/1471-2407-13-586 pmid: 24321518 |
[1] | CHENG Wen-yu, ZHANG Bo-xin, ZHAO Hong-yuan, CHEN Yan, XIE Juan-ping. Research Progress in Natural Products Against Porcine Epidemic Diarrhea Virus [J]. Biotechnology Bulletin, 2022, 38(12): 127-136. |
[2] | CHENG Wen-yu, BAI Yun, JIA Huai-jie, QIANG Tao-yan, ZHAO Hong-yuan, ZHANG Bo-yi, GUO Xiao-hui. Research Progress on Proteins of PEDV Antagonizing Host Innate Immune Responses [J]. Biotechnology Bulletin, 2020, 36(12): 229-238. |
[3] | FAN Yan-hui ,WANG Jun. Screening,Identification,and Inhibitory Effect of Antagonistic Actinomycetes Against Macrophoma kuwatsukai Causing Winter Jujube Ring Grain Disease [J]. Biotechnology Bulletin, 2017, 33(7): 114-119. |
[4] | Yan Xiaohui, Li Ruifang, Zhang Huiru, Yin Yanjie, Lu Yanbo, Lu Yali. Effect of Animal Endogenous Polypeptide CGA-N46 on Cell Proliferation of Candidas [J]. Biotechnology Bulletin, 2014, 0(2): 148-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||