Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 132-140.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0024
Previous Articles Next Articles
LIANG Wang-wang(), LI Cheng-long, CHEN Wen-zhi, FENG Zhi-hua, CAI Shao-li(), CHEN Qi
Received:
2021-01-07
Online:
2021-12-26
Published:
2022-01-19
Contact:
CAI Shao-li
E-mail:lwwskt@163.com;caishaoli@fjnu.edu.cn
LIANG Wang-wang, LI Cheng-long, CHEN Wen-zhi, FENG Zhi-hua, CAI Shao-li, CHEN Qi. Construction of Recombinant Pseudorabies Virus Expressing CD2v and P12 Proteins of African Swine Fever Virus[J]. Biotechnology Bulletin, 2021, 37(12): 132-140.
Primer | Primer sequence |
---|---|
sgRNA-TK | CGCGGGGTCGTACGTGCTGC |
sgRNA-gI | TGCCCGAGCCGATGGCGTAC |
Table 1 sgRNA sequences targetting CD2v and p12 gene
Primer | Primer sequence |
---|---|
sgRNA-TK | CGCGGGGTCGTACGTGCTGC |
sgRNA-gI | TGCCCGAGCCGATGGCGTAC |
Primer | Primer sequence |
---|---|
3.1-CD2v | GTCGACGCCACGAACAC |
TCTAGAACGTGTTGACCAGCAT | |
3.1-p12 | GTCGACATGATGATGGTGGC |
TCTAGAACGACGATCGTGGG | |
PRV-TK | CTCGATGACGAAGCACAGGT |
TTGACCAGCATGGCGTAGAC | |
PRV-p12 | GACGCTGCTGTTTCTGGAGG |
TCTAGAACGTGTTGACCAGCAT | |
PRV-CD2v-F | CGCCCAAGAAGATCAGGAGG |
TAGGGGGCGTACTTGGCATA | |
PRV-CD2v-R | CACAGTCCCCGAGAAGTTGG |
CCCAGCACCATGGCTATCTT | |
PRV-p12-F | CTCGATGACGAAGCACAGGT |
TAGGGGGCGTACTTGGCATA | |
PRV-p12-R | AGCATGATGACACCACTTCCA |
TGATGTCCCCGACGATGAAG |
Table 2 PCR primers for amplification and verfication
Primer | Primer sequence |
---|---|
3.1-CD2v | GTCGACGCCACGAACAC |
TCTAGAACGTGTTGACCAGCAT | |
3.1-p12 | GTCGACATGATGATGGTGGC |
TCTAGAACGACGATCGTGGG | |
PRV-TK | CTCGATGACGAAGCACAGGT |
TTGACCAGCATGGCGTAGAC | |
PRV-p12 | GACGCTGCTGTTTCTGGAGG |
TCTAGAACGTGTTGACCAGCAT | |
PRV-CD2v-F | CGCCCAAGAAGATCAGGAGG |
TAGGGGGCGTACTTGGCATA | |
PRV-CD2v-R | CACAGTCCCCGAGAAGTTGG |
CCCAGCACCATGGCTATCTT | |
PRV-p12-F | CTCGATGACGAAGCACAGGT |
TAGGGGGCGTACTTGGCATA | |
PRV-p12-R | AGCATGATGACACCACTTCCA |
TGATGTCCCCGACGATGAAG |
Fig.2 Preparation of homologous recombinant fragment and verification of recombination sites A:M:DL 5000 DNA marker. 1:PCR results of p12 gene with both sides donor from pcDNA3.1-PRV-TK-P12. 2:PCR results of CD2v gene with both sides donor from pcDNA3.1-PRV-gI-CD2v. 3 and 4:Blank control(water as template). B:M:DL 5000 DNA marker. 1:PCR results of TK gene from wild-type PRV. 2:PCR results of TK gene from PRV-∆gI-(p12)-∆TK-(CD2v). 3:PCR results of gI gene from wild-type PRV. 4:PCR results of gI gene from PRV-∆gI-(p12)-∆TK-(CD2v). C:M:DL2000 marker. 1:PCR results of CD2v gene with 5' donor from PRV-∆gI-(p12)-∆TK-(CD2v). 2:PCR results of CD2v gene with 3' donor from PRV-∆gI-(p12)-∆TK-(CD2v). 3:PCR results of gI gene with 5' Donor from PRV-∆gI-(p12)-∆TK-(CD2v). 4:PCR results of gI gene with 3' donor from PRV-∆gI-(p12)-∆TK-(CD2v). D:Sequencing analysis from Fig.2-C
Fig.3 Identification of genetic stability A:PCR detection for genetic stability of recombinant virus. M:DL5000 maker; 1,3 and 5:the PCR result of p12 gene from 10th,20th and 30th Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v)recombinant virus,respectively; 2,4 and 6:the PCR result of CD2v gene from 10th,20th and 30th Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v),respectively. B:The expression of CD2v protein in Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v)recombinant virus is confirmed by Western blot. Lane M2:Protein marker; C1:control(Vero cells); C2:Vero cells infected with PRV-Fa; C3:Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v). C:Expression of EGFP and mCherry in PRV-∆gI-(p12)-∆TK-(CD2v)via immunofluorescence analysis
Fig.4 One-step growth curve of recombinant viruses and mice’s survival curve A:Crystal violet staining of Vero cells(mock). B:Crystal violet staining of Vero cells infected with PRV-Fa virus. C:Crystal violet staining of Vero cells infected with PRV-∆gI-(p12)-∆TK-(CD2v)virus. D:Statistical results of the plaque area. E:Virus sample after the amplification in Vero cells was collected at 12,24,36,and 48 h,and the virus titer was calculated by the Karber method to draw a one-step growth curve. F:Five-week-old ICR mice were injected with viruses into the right hind leg to observe mice’s survival daily(n = 15/each group). All data were analysed by unpaired t-test(GraphPad Prism 5.0,GraphPad Software,San Diego,CA,USA),*P<0.05;**P<0.01;***P<0.001;ns(not significant)
Fig.5 Histopathological sections of mice tissues A:HE(Hematoxylin-Eosin)staining of heart. B:HE staining of liver. C:HE staining of spleen,there are a lot of immune cells accumulated in the spleens of PRV-∆gI-(p12)-∆TK-(CD2v)infected group. D:HE(Hematoxylin-Eosin)staining of lung,the lung of PRV-Fa infected group was swollen obviously. E:HE staining of kidney. F:HE staining of brain,the brain of PRV-Fa infected group showed a large number of immune cell accumulated
[1] |
Galindo I, Alonso C. African swine fever virus:a review[J]. Viruses, 2017, 9(5). DOI: 10. 3390/v9050103.
doi: 10. 3390/v9050103 |
[2] |
Quembo CJ, Jori F, Vosloo W, et al. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype[J]. Transbound Emerg Dis, 2018, 65(2):420-431.
doi: 10.1111/tbed.12700 pmid: 28921895 |
[3] |
Zhou X, Li N, et al. Emergence of African swine fever in China, 2018[J]. Transbound Emerg Dis, 2018, 65(6):1482-1484.
doi: 10.1111/tbed.2018.65.issue-6 URL |
[4] | Sánchez EG, Pérez-Núñez D, Revilla Y. Mechanisms of entry and endosomal pathway of African swine fever virus[J]. Vaccines(Basel), 2017, 5(4):E42. |
[5] | Alejo A, Matamoros T, Guerra M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-e01218. |
[6] |
Goatley LC, Dixon LK. Processing and localization of the African swine fever virus CD2v transmembrane protein[J]. J Virol, 2011, 85(7):3294-3305.
doi: 10.1128/JVI.01994-10 URL |
[7] | Monteagudo PL, Lacasta A, López E, et al. BA71ΔCD2:a new recombinant live attenuated African swine fever virus with cross-protective capabilities[J]. J Virol, 2017, 91:e01058-17. |
[8] |
Angulo A, Viñuela E, Alcamí A. Inhibition of African swine fever virus binding and infectivity by purified recombinant virus attachment protein p12[J]. J Virol, 1993, 67(9):5463-5471.
pmid: 8350406 |
[9] | Jancovich JK, Chapman D, Hansen DT, et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins[J]. Journal of Virology, 2018, 92(8):e02219-17. |
[10] |
Pérez-Núñez D, Sunwoo SY, et al. Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs[J]. Vet Immunol Immunopathol, 2019, 208:34-43.
doi: 10.1016/j.vetimm.2018.11.018 URL |
[11] |
Lopera-Madrid J, Osorio JE, He Y, et al. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine[J]. Vet Immunol Immunopathol, 2017, 185:20-33.
doi: 10.1016/j.vetimm.2017.01.004 URL |
[12] |
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus:impact on neurovirology and veterinary medicine[J]. Microbiol Mol Biol Rev, 2005, 69(3):462-500.
doi: 10.1128/MMBR.69.3.462-500.2005 URL |
[13] |
Oláh P, Tombácz D, Póka N, et al. Characterization of pseudorabies virus transcriptome by Illumina sequencing[J]. BMC Microbiol, 2015, 15:130.
doi: 10.1186/s12866-015-0470-0 URL |
[14] |
Tong W, Li GX, Liang C, et al. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains[J]. Antivir Res, 2016, 130:110-117.
doi: 10.1016/j.antiviral.2016.03.002 pmid: 26946112 |
[15] |
Tang YD, Liu JT, Wang TY, et al. Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system[J]. Virus Res, 2016, 225:33-39.
doi: 10.1016/j.virusres.2016.09.004 URL |
[16] |
Wu KK, Liu JM, Wang LX, et al. Current state of global African swine fever vaccine development under the prevalence and transmission of ASF in China[J]. Vaccines, 2020, 8(3):531.
doi: 10.3390/vaccines8030531 URL |
[17] |
Ramirez-Medina E, Vuono E, O’Donnell V, et al. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain[J]. Viruses, 2019, 11(7):599.
doi: 10.3390/v11070599 URL |
[18] | Revilla Y, Pérez-Núñez D, Richt JA. African swine fever virus biology and vaccine approaches[J]. Adv Virus Res, 2018, 100:41-74. |
[19] |
Gaudreault NN, Richt JA. Subunit vaccine approaches for African swine fever virus[J]. Vaccines, 2019, 7(2):56.
doi: 10.3390/vaccines7020056 URL |
[20] |
Malogolovkin A, Burmakina G, Tulman ER, et al. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity[J]. J Gen Virol, 2015, 96(4):866-873.
doi: 10.1099/jgv.0.000024 URL |
[21] |
Ruiz-Gonzalvo F, Rodríguez F, Escribano JM. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus[J]. Virology, 1996, 218(1):285-289.
pmid: 8615037 |
[22] |
Jiang YB, Fang LR, Xiao SB, et al. Construction and immunogenicity of recombinant pseudorabies virus expressing the modified GP5m protein of porcine reproduction and respiratory syndrome virus[J]. Front Biol China, 2007, 2(1):85-91.
doi: 10.1007/s11515-007-0015-5 URL |
[23] |
Feng ZH, Chen JH, Liang WW, et al. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice[J]. Virol J, 2020, 17(1):180.
doi: 10.1186/s12985-020-01450-7 URL |
[24] |
Qiu HJ, Tian ZJ, Tong GZ, et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets[J]. Vet Immunol Immunopathol, 2005, 106(3/4):309-319.
doi: 10.1016/j.vetimm.2005.03.008 URL |
[25] | Abid M, Teklue T, Li YF, et al. Generation and immunogenicity of a recombinant pseudorabies virus co-expressing classical swine fever virus E2 protein and porcine Circovirus type 2 capsid protein based on fosmid library platform[J]. Pathogens, 2019, 8(4):E279. |
[1] | WANG Xiang-kun, SONG Xue-hong, LIU Jin-long, GUO Pei-hong, ZHUANG Xiao-feng, WEI Liang-meng, ZHOU Fan, ZHANG Shu-yu, GAO Pan-pan, WEI Kai. Novel Coronavirus Subunit Vaccine and Screening of Its Efficient Immune Enhancer [J]. Biotechnology Bulletin, 2023, 39(1): 305-314. |
[2] | WEN Ya-ya, SONG Li, WANG Qiao-ju, PAN Zhi-ming, JIAO Xin-an. Research Status and Challenges of COVID-19 Vaccine [J]. Biotechnology Bulletin, 2022, 38(7): 136-145. |
[3] | MA Fang-fang, KANG Bi-jing, MA Chun-ying, LIU Zhen-bin, YANG Di, QIAO Zi-lin, WANG Ming-ming, MA Zhong-ren, WANG Jia-min. Research Progress in Vero Cell-based Influenza Vaccine [J]. Biotechnology Bulletin, 2022, 38(12): 137-143. |
[4] | ZHANG Ai-lian, BA Xue-li, WANG Dan-yang, ZHAO Bing. Effects of Crude Polysaccharide from Cistanche deserticola in Xinjiang on Foot-and-Mouth Disease Viral Vaccine Antibody and T cell Subgroup [J]. Biotechnology Bulletin, 2021, 37(9): 212-218. |
[5] | ZHAO Hong-yuan, WANG Zhao, CHENG Wen-yu, MA Ning-ning, LI Man, WEI Xiao-li. Progress on Antiviral Agents Against African Swine Fever Virus [J]. Biotechnology Bulletin, 2021, 37(5): 174-181. |
[6] | YIN Jun-lei, ZHANG Yan-fang, ZOU Fan-yu, PAN Peng-tao, DUAN Yan-hong, QIU Shu-xing. Construction and Immunoprotection of sptP Deletion Mutant of Salmonella Pullorum [J]. Biotechnology Bulletin, 2021, 37(2): 122-128. |
[7] | CHEN Si-qian, WU Bian, LIU Chen-jian, LI Xiao-ran. Research Advances on the Influence of Intestinal Microorganism on the Immune Effect of Vaccine [J]. Biotechnology Bulletin, 2021, 37(12): 220-226. |
[8] | WANG Cai-xia, DU Fang-yuan, LIN Xiang-mei, Grzegorz Wozniakowski, WANG Qin, FENG Chun-yan, WU Shao-qiang. Generation of a Vero Cell Line Stably Expressing African Swine Fever Virus P54 Protein [J]. Biotechnology Bulletin, 2020, 36(5): 139-144. |
[9] | HUáNG Feng-jun, LI Jiá-háo, LIU Rui-lin, YU Li-ping, WáNG Xi-yáo, LI Li-qin. Expression of StKUP12 in Potáto ánd Its Function in Potássium Nutrition [J]. Biotechnology Bulletin, 2020, 36(4): 54-60. |
[10] | HU Feng, WANG Qing, LI Ying-ying, ZENG Wei-wei, WANG Gao-xue, ZHU Bin, WANG Ying-ying, YIN Ji-yuan. Construction of Single-walled Carbon Nanotube-loaded Koi Herpes Virus ORF149 Nucleic Acid Vaccine [J]. Biotechnology Bulletin, 2020, 36(2): 206-213. |
[11] | LI Peng-hao, LIANG Yan-yu, WANG Yan-wei, GUAN Yang, PANG Wen-qiang, TIAN Ke-gong. Soluble Expression and Enzyme Activity Analysis of African Swine Fever Virus K196R and A240L Proteins [J]. Biotechnology Bulletin, 2020, 36(11): 70-75. |
[12] | OU Yun-wen, LIU Li-jun, DAI Jun-fei, MA Bing, ZHANG Yong-guang, ZHANG Jie. Roles of African Swine Fever Virus Structural Proteins in Viral Infection [J]. Biotechnology Bulletin, 2019, 35(6): 156-163. |
[13] | LANG Qiao-li, WU Meng, HUANG Nan, HE Qi-lin, GE Liang-peng, YANG Xi. Eukaryotic Expression of Extracellular Domain of Pseudorabies Virus gE Protein and Preparation of Monoclonal Antibodies [J]. Biotechnology Bulletin, 2019, 35(11): 96-103. |
[14] | LIU Shi-xu ,WANG Qing ,FANG Zhen-zhen ,CHANG Ou-qin ,ZENG Wei-wei ,HUANG Zhi-bin. Research Advance on Oral Vaccine for Aquatic Animals [J]. Biotechnology Bulletin, 2018, 34(6): 30-37. |
[15] | LIU Rong-rong. Research and Development Progress on Plant-made Pharmaceuticals [J]. Biotechnology Bulletin, 2017, 33(9): 17-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||