Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 41-49.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0151
Previous Articles Next Articles
XU Nan(), XU Yu-juan, SUN Pan, ZONG Ren-jie, GUO Min-liang()
Received:
2021-02-05
Online:
2021-12-26
Published:
2022-01-19
Contact:
GUO Min-liang
E-mail:nanxu@yzu.edu.cn;guoml@yzu.edu.cn
XU Nan, XU Yu-juan, SUN Pan, ZONG Ren-jie, GUO Min-liang. Exploration of the Transcriptional Regulation of Agrobacterium tumefaciens vbp2 Promoter[J]. Biotechnology Bulletin, 2021, 37(12): 41-49.
引物 Primer | 序列 Sequence(5' - 3') | 酶切位点 Restriction endonuclease site | 用途 Purpose |
---|---|---|---|
Q1-F | TGTGGATCCAACGTCCGCTGCGCGA | BamH I | 扩增vbp2上游526 bp片段 Amplifying upstream 526 bp segment of vbp2 |
Q1-R | AGCTCCTCGCCCTTGCTCACCATGGGAACGAGGTATCTGACTA | 无None | |
Rfp-F | CGAAACGAAATAGGTGTACCCATCTGCCAC | 无None | 扩增rfp基因 Amplifying gene rfp |
Rfp-R | CATGAGCGACGGGAATTCGCCTATCTGTGCCCCAGT | EcoR I | |
H-F | CTGGGGCACAGATAGCCGCGAGGTGTCAAAGCA | 无None | 扩增vbp2下游1 kb片段 Amplifying downstream 1 kb segment of vbp2 |
H-R | GAAGCTTATTGCGCTCGGGCCCAGTGGCACGG | Hind III | |
P-F | CCCAAGCTTGGGAGAGGCGGTTTGCGTATTGGGC | Hind III | 扩增去除pUCA-19质粒的lacZ’启动子 Amplifying lacZ’ promoter with pUCA-19 plasmid removed |
P-R | CCCAAGCTTACAGGAAACAGCTATGACCATGATT | Hind III | |
Egfp-F | TAGTCAGATACCTCGTTCCCATGGTGAGCAAGGGCGAGGA | 无None | 扩增gfp序列 Amplifying gfp sequence |
Egfp-R | CCCAAGCTTTTACTTGTACAGCTCGTCCATGCC | Hind III | |
Q2-F | CGCGGATCCCGATCCAGTTATAATGAATTTGC | Hind III | 与Q1-R扩增vbp2上游463 bp序列 Amplifying upstream 463 bp sequence of vbp2 with Q1-R |
Q3-F | CGCGGATCCAAGTAGTAGTAAGGTCGATCG | Hind III | 与Q1-R扩增vbp2上游260 bp序列 Amplifying upstream 260 bp sequence of vbp2 with Q1-R |
Q4-F | ATCAGGATCCGGCAGCGTGTTTATCAGG | Hind III | 与Q1-R扩增vbp2上游165 bp序列 Amplifying upstream 165 bp sequence of vbp2 with Q1-R |
Q5-F | CGCGGATCCGACCTACAAAATTCGACTAGCAC | Hind III | 与Q1-R扩增vbp2上游126 bp序列 Amplifying upstream 126 bp sequence of vbp2 with Q1-R |
Q6-F | CGCGGATCCGGCATTTGATCAACGTGTCG | Hind III | 与Q1-R扩增vbp2上游97 bp序列 Amplifying upstream 97 bp sequence of vbp2 with Q1-R |
Q7-F | CGCGGATCCATACCACCAGCGCGATTGC | Hind III | 与Q1-R扩增vbp2上游60 bp序列 Amplifying upstream 60 bp sequence of vbp2 with Q1-R |
Q8-F | CGCGGATCCTAGTCAGATACCTCGTTCCC | Hind III | 与Q1-R扩增vbp2上游20 bp序列 Amplifying upstream 20 bp sequence of vbp2 with Q1-R |
Table 1 Primers used in this study
引物 Primer | 序列 Sequence(5' - 3') | 酶切位点 Restriction endonuclease site | 用途 Purpose |
---|---|---|---|
Q1-F | TGTGGATCCAACGTCCGCTGCGCGA | BamH I | 扩增vbp2上游526 bp片段 Amplifying upstream 526 bp segment of vbp2 |
Q1-R | AGCTCCTCGCCCTTGCTCACCATGGGAACGAGGTATCTGACTA | 无None | |
Rfp-F | CGAAACGAAATAGGTGTACCCATCTGCCAC | 无None | 扩增rfp基因 Amplifying gene rfp |
Rfp-R | CATGAGCGACGGGAATTCGCCTATCTGTGCCCCAGT | EcoR I | |
H-F | CTGGGGCACAGATAGCCGCGAGGTGTCAAAGCA | 无None | 扩增vbp2下游1 kb片段 Amplifying downstream 1 kb segment of vbp2 |
H-R | GAAGCTTATTGCGCTCGGGCCCAGTGGCACGG | Hind III | |
P-F | CCCAAGCTTGGGAGAGGCGGTTTGCGTATTGGGC | Hind III | 扩增去除pUCA-19质粒的lacZ’启动子 Amplifying lacZ’ promoter with pUCA-19 plasmid removed |
P-R | CCCAAGCTTACAGGAAACAGCTATGACCATGATT | Hind III | |
Egfp-F | TAGTCAGATACCTCGTTCCCATGGTGAGCAAGGGCGAGGA | 无None | 扩增gfp序列 Amplifying gfp sequence |
Egfp-R | CCCAAGCTTTTACTTGTACAGCTCGTCCATGCC | Hind III | |
Q2-F | CGCGGATCCCGATCCAGTTATAATGAATTTGC | Hind III | 与Q1-R扩增vbp2上游463 bp序列 Amplifying upstream 463 bp sequence of vbp2 with Q1-R |
Q3-F | CGCGGATCCAAGTAGTAGTAAGGTCGATCG | Hind III | 与Q1-R扩增vbp2上游260 bp序列 Amplifying upstream 260 bp sequence of vbp2 with Q1-R |
Q4-F | ATCAGGATCCGGCAGCGTGTTTATCAGG | Hind III | 与Q1-R扩增vbp2上游165 bp序列 Amplifying upstream 165 bp sequence of vbp2 with Q1-R |
Q5-F | CGCGGATCCGACCTACAAAATTCGACTAGCAC | Hind III | 与Q1-R扩增vbp2上游126 bp序列 Amplifying upstream 126 bp sequence of vbp2 with Q1-R |
Q6-F | CGCGGATCCGGCATTTGATCAACGTGTCG | Hind III | 与Q1-R扩增vbp2上游97 bp序列 Amplifying upstream 97 bp sequence of vbp2 with Q1-R |
Q7-F | CGCGGATCCATACCACCAGCGCGATTGC | Hind III | 与Q1-R扩增vbp2上游60 bp序列 Amplifying upstream 60 bp sequence of vbp2 with Q1-R |
Q8-F | CGCGGATCCTAGTCAGATACCTCGTTCCC | Hind III | 与Q1-R扩增vbp2上游20 bp序列 Amplifying upstream 20 bp sequence of vbp2 with Q1-R |
Fig.2 Identification of plasmid pEX18Km-rfp used for the construction of A. tumefaciens mutant via homologous recombination A:DNA fragments of the plasmid cleaved by the restriction endonuclease. B:The PCR products amplified from bacteria by primers inserted into the 2 ends of the fragment
Fig.5 Construction and identification of the egfp expression plasmids controlled by different lengths of vbp2 promotor A:The length,region and possible regulatory elements of the truncated vbp2 promotor fragment. B:PCR-identified A. tumefaciens strains that carry plasmids expressing egfp under the control of different lengths of vbp2 promotor
[1] |
Guo ML, Ye JY, Gao DW, et al. Agrobacterium-mediated horizontal gene transfer:Mechanism, biotechnological application, potential risk and forestalling strategy[J]. Biotechnol Adv, 2019, 37(1):259-270.
doi: 10.1016/j.biotechadv.2018.12.008 URL |
[2] |
Matveeva TV, Lutova LA. Horizontal gene transfer from Agrobacterium to plants[J]. Front Plant Sci, 2014, 5:326.
doi: 10.3389/fpls.2014.00326 pmid: 25157257 |
[3] | Guo ML, Bian XW, Wu X, et al. Agrobacterium-mediated genetic transformation:history and progress[M]// Genetic Transformation. InTech, 2011:3-28. |
[4] | 叶文兴, 孔令琪. 影响根癌农杆菌转化效率的因素综述[J]. 中国草地学报, 2019, 41(3):142-148. |
Ye WX, Kong LQ. Advanced in factors influencing Agrobacterium tumefaciens-mediates transformation efficiency[J]. Chin J Grassland, 2019, 41(3):142-148. | |
[5] | 王根平, 杜文明, 夏兰琴. 植物安全转基因技术研究现状与展望[J]. 中国农业科学, 2014, 47(5):823-843. |
Wang GP, Du WM, Xia LQ. Current status of transgenic technologies for safety consideration in plants and future perspectives[J]. Sci Agric Sin, 2014, 47(5):823-843. | |
[6] | 赵佩, 王轲, 张伟, 等. 参与农杆菌侵染及T-DNA转运过程植物蛋白的研究进展和思考[J]. 中国农业科学, 2014, 47(13):2504-2518. |
Zhao P, Wang K, Zhang W, et al. Review and inspiration of plant proteins involved in the transformation processing of T-DNA initiated by Agrobacterium[J]. Sci Agric Sin, 2014, 47(13):2504-2518. | |
[7] |
Ankenbauer RG, Nester EW. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes:structural specificity and activities of monosaccharides[J]. J Bacteriol, 1990, 172(11):6442-6446.
pmid: 2121715 |
[8] |
Subramoni S, Nathoo N, Klimov E, et al. Agrobacterium tumefaciens responses to plant-derived signaling molecules[J]. Front Plant Sci, 2014, 5:322.
doi: 10.3389/fpls.2014.00322 pmid: 25071805 |
[9] |
Stachel SE, Messens E, van Montagu M, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens[J]. Nature, 1985, 318(6047):624-629.
doi: 10.1038/318624a0 URL |
[10] | 郭敏亮, 高佃坤, 金英善. 农杆菌T-复合物的形成与转运研究进展[J]. 生物化学与生物物理进展, 2009, 36(11):1408-1414. |
Guo ML, Gao DK, Jin YS. Progress in the formation and transfer of Agrobacterium T-complex[J]. Prog Biochem Biophys, 2009, 36(11):1408-1414.
doi: 10.3724/SP.J.1206.2009.00195 URL |
|
[11] |
Binns AN, Thomashow MF. Cell biology of Agrobacterium infection and transformation of plants[J]. Annu Rev Microbiol, 1988, 42(1):575-606.
doi: 10.1146/micro.1988.42.issue-1 URL |
[12] | Lacroix B, Citovsky V. Transfer of DNA from bacteria to eukaryotes[J]. mBio, 2016, 7(4):e00863-e00816. |
[13] |
Guo ML, Hou QM, Hew CL, et al. Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters[J]. Mol Plant Microbe Interact, 2007, 20(10):1201-1212.
doi: 10.1094/MPMI-20-10-1201 URL |
[14] |
Guo ML, Jin SG, Sun DY, et al. Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus[J]. PNAS, 2007, 104(50):20019-20024.
doi: 10.1073/pnas.0701738104 URL |
[15] | 郭敏亮. 农杆菌T-复合物招募蛋白的发现和生物学功能鉴定[J]. 江西农业大学学报, 2010, 32(5):992-996. |
Guo ML. Discovery and biological function identification of Agrobacterium T-complex recruiting protein[J]. Acta Agric Univ Jiangxiensis, 2010, 32(5):992-996. | |
[16] | Yang J, Wu MX, et al. Expression of Agrobacterium homolog genes encoding T-complex recruiting protein under virulence induction conditions[J]. Front Microbiol, 2015, 6:1379. |
[17] |
Guo ML, Zhu Q, Gao DK. Development and optimization of method for generating unmarked A. tumefaciens mutants[J]. Prog Biochem Biophys, 2009, 36(5):556-565.
doi: 10.3724/SP.J.1206.2008.00618 URL |
[18] | 郭敏亮, 姜涌明. 考马斯亮蓝显色液组分对蛋白质测定的影响[J]. 生物化学与生物物理进展, 1996, 23(6):558-561. |
Guo ML, Jiang YM. Effect of ingredients of coomassie brilliant blue color-developing reagent on protein assay[J]. Prog Biochem Biophys, 1996, 23(6):558-561. | |
[19] | 樊晋宇, 崔宗强, 张先恩. 红色荧光蛋白的光谱多样性及体外分子进化[J]. 生物化学与生物物理进展, 2008, 35(10):1112-1120. |
Fan JY, Cui ZQ, Zhang XE. Optical spectra diversity and in vitro molecular evolution of red fluorescent proteins[J]. Prog Biochem Biophys, 2008, 35(10):1112-1120. | |
[20] |
Merzlyak EM, Goedhart J, Shcherbo D, et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime[J]. Nat Methods, 2007, 4(7):555-557.
doi: 10.1038/nmeth1062 URL |
[21] |
王飞, 杨海涛, 王泽方. 红色荧光蛋白的研究进展[J]. 生物技术通报, 2017, 33(9):32-47.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0401 |
Wang F, Yang HT, Wang ZF. Research progress on red fluorescent protein[J]. Biotechnol Bull, 2017, 33(9):32-47. | |
[22] |
Zimmer M. Green fluorescent protein(GFP):applications, structure, and related photophysical behavior[J]. Chem Rev, 2002, 102(3):759-781.
pmid: 11890756 |
[23] |
Miesenböck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins[J]. Nature, 1998, 394(6689):192-195.
doi: 10.1038/28190 URL |
[24] |
Dong T, Schellhorn HE. Role of RpoS in virulence of pathogens[J]. Infect Immun, 2010, 78(3):887-897.
doi: 10.1128/IAI.00882-09 pmid: 19948835 |
[25] |
Caimano MJ, Groshong AM, Belperron A, et al. The RpoS gatekeeper in Borrelia burgdorferi:an invariant regulatory scheme that promotes spirochete persistence in reservoir hosts and niche diversity[J]. Front Microbiol, 2019, 10:1923.
doi: 10.3389/fmicb.2019.01923 URL |
[26] |
Huang L, Guo L, Xu X, et al. The role of rpoS in the regulation of Vibrio alginolyticus virulence and the response to diverse stresses[J]. J Fish Dis, 2019, 42(5):703-712.
doi: 10.1111/jfd.2019.42.issue-5 URL |
[27] | 陈翠娜, 冯德玉, 张新, 等. 乙酰丁香酮及共培养基pH对棉花遗传转化的影响[J]. 上海交通大学学报:农业科学版, 2013, 31(1):18-22. |
Chen CN, Feng DY, Zhang X, et al. Effect of acetosyringone and media pH on transformation of cotton[J]. J Shanghai Jiao Tong Univ:Agric Sci, 2013, 31(1):18-22. | |
[28] |
Guo ML, Huang ZW, Yang J. Is there any crosstalk between the chemotaxis and virulence induction signaling in Agrobacterium tumefaciens?[J]. Biotechnol Adv, 2017, 35(4):505-511.
doi: 10.1016/j.biotechadv.2017.03.008 URL |
[29] | Wise AA, Binns AN. The receiver of the Agrobacterium tumefaciens VirA histidine kinase forms a stable interaction with VirG to activate virulence gene expression[J]. Front Microbiol, 2015, 6:1546. |
[30] |
Tobin JF, Schleif RF. Purification and properties of RhaR, the positive regulator of the L-rhamnose operons of Escherichia coli[J]. J Mol Biol, 1990, 211(1):75-89.
pmid: 2405166 |
[31] |
Wickstrum JR, Skredenske JM, Balasubramaniam V, et al. The AraC/XylS family activator RhaS negatively autoregulates rhaSR expression by preventing cyclic AMP receptor protein activation[J]. J Bacteriol, 2010, 192(1):225-232.
doi: 10.1128/JB.00829-08 pmid: 19854903 |
[32] |
Kolin A, Balasubramaniam V, Skredenske JM, et al. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR[J]. Mol Microbiol, 2008, 68(2):448-461.
doi: 10.1111/j.1365-2958.2008.06164.x pmid: 18366439 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||