Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (2): 187-194.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0792
Previous Articles Next Articles
XU Liu-jia(), ZHENG Ming-ming()
Received:
2020-06-30
Online:
2021-02-26
Published:
2021-02-26
Contact:
ZHENG Ming-ming
E-mail:xuliujia0525@163.com;zhengmingming@caas.cn
XU Liu-jia, ZHENG Ming-ming. Research Progress on the Construction and Application of Pickering Emulsion Enzymatic Reaction System[J]. Biotechnology Bulletin, 2021, 37(2): 187-194.
颗粒种类 | 改性前 | 改性后 | ||||
---|---|---|---|---|---|---|
直径/μm | 三相接触角/° | 直径/μm | 三相接触角/° | |||
淀粉球晶 | 3.97 | 39.5 | 3.88 | 74.4 | ||
大米淀粉 | 7.61 | 42.5 | 7.55 | 67.6 | ||
玉米淀粉 | 14.98 | 33.6 | 14.38 | 60.7 | ||
马铃薯淀粉 | 26.93 | 46.1 | 24.77 | 54.4 |
颗粒种类 | 改性前 | 改性后 | ||||
---|---|---|---|---|---|---|
直径/μm | 三相接触角/° | 直径/μm | 三相接触角/° | |||
淀粉球晶 | 3.97 | 39.5 | 3.88 | 74.4 | ||
大米淀粉 | 7.61 | 42.5 | 7.55 | 67.6 | ||
玉米淀粉 | 14.98 | 33.6 | 14.38 | 60.7 | ||
马铃薯淀粉 | 26.93 | 46.1 | 24.77 | 54.4 |
酶的种类 | 稳定剂/载体 | 酶促反应 | 有机溶剂 | 转化率 | 参考文献 |
---|---|---|---|---|---|
脂肪酶AYS | 介孔碳球 | 植物甾醇和α-亚麻酸的酯化反应 | - | 1.5 h,92% | [ |
脂肪酶CALB | 纳米聚合体PEG-b-P(S-co-TMI) | 1-己醇与己酸的酯化反应 | 甲苯 | 24 h,80% | [ |
脂肪酶 | 海藻酸盐复合粒子E@Alg@s-TiO2 | 1-己醇与己酸的酯化反应 | 正己烷 | 4 h,85-95% | [ |
脂肪酶CALB | 纳米共聚物P(St-co-GMA) | 己醇和己酸的酯化反应 | 庚烷 | 24 h,96.5% | [ |
脂肪酶CALB | 二氧化硅纳米花 | 甲醇和废弃油生产生物柴油 | 环己烷 | 8.11 h,98.5% | [ |
脂肪酶CALB | 功能化多壁碳纳米管MWCNTs-NH2 | 马齿苋种子油和甲醇生产生物柴油 | 正庚烷 | 11.06 h,95.2% | [ |
脂肪酶CALB | 介孔纳米二氧化硅 | 1-己醇与己酸的酯化反应 | 甲苯 | 20 min,88% | [ |
酶的种类 | 稳定剂/载体 | 酶促反应 | 有机溶剂 | 转化率 | 参考文献 |
---|---|---|---|---|---|
脂肪酶AYS | 介孔碳球 | 植物甾醇和α-亚麻酸的酯化反应 | - | 1.5 h,92% | [ |
脂肪酶CALB | 纳米聚合体PEG-b-P(S-co-TMI) | 1-己醇与己酸的酯化反应 | 甲苯 | 24 h,80% | [ |
脂肪酶 | 海藻酸盐复合粒子E@Alg@s-TiO2 | 1-己醇与己酸的酯化反应 | 正己烷 | 4 h,85-95% | [ |
脂肪酶CALB | 纳米共聚物P(St-co-GMA) | 己醇和己酸的酯化反应 | 庚烷 | 24 h,96.5% | [ |
脂肪酶CALB | 二氧化硅纳米花 | 甲醇和废弃油生产生物柴油 | 环己烷 | 8.11 h,98.5% | [ |
脂肪酶CALB | 功能化多壁碳纳米管MWCNTs-NH2 | 马齿苋种子油和甲醇生产生物柴油 | 正庚烷 | 11.06 h,95.2% | [ |
脂肪酶CALB | 介孔纳米二氧化硅 | 1-己醇与己酸的酯化反应 | 甲苯 | 20 min,88% | [ |
[1] |
Reetz MT. Biocatalysis in organic chemistry and biotechnology:past, present, and future[J]. Journal of the American Chemical Society, 2013,135(34):12480-12496.
URL pmid: 23930719 |
[2] |
Park ES, Shin JS. Biocatalytic cascade reactions for asymmetric synjournal of aliphatic amino acids in a biphasic reaction system[J]. Journal of Molecular Catalysis B:Enzymatic, 2015,121:9-14.
doi: 10.1016/j.molcatb.2015.07.011 URL |
[3] |
Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications[J]. Chemical Society Reviews, 2013,42(15):6236-6249.
doi: 10.1039/c3cs35511j URL |
[4] |
Adlercreutz P. Immobilisation and application of lipases in organic media[J]. Chemical Society Reviews, 2013,42(15):6406-6436.
URL pmid: 23403895 |
[5] |
Piradashvili K, Alexandrino EM, Wurm FR, et al. Reactions and polymerizations at the liquid-liquid interface[J]. Chemical Reviews, 2015,116(4):2141-2169.
doi: 10.1021/acs.chemrev.5b00567 URL pmid: 26708780 |
[6] |
Wittenboer AVD, Niemeijer B, Karmee SK, et al. Systematic assessment of the stability of benzaldehyde lyase in aqueous-organic biphasic systems and its stabilization by modification with methoxy-poly(ethylene)glycol[J]. Journal of Molecular Catalysis B:Enzymatic, 2010,67(3-4):208-213.
doi: 10.1016/j.molcatb.2010.08.007 URL |
[7] |
Pickering SU. CXCVI. -Emulsions[J]. Journal of the Chemical Society Transactions, 1907,91:2001-2021.
doi: 10.1039/CT9079102001 URL |
[8] |
Berton-Carabin CC, Schroen K. Pickering emulsions for food applications:background, trends, and challenges[J]. Annual Review of Food Science & Technology, 2015,6:263-297.
doi: 10.1146/annurev-food-081114-110822 URL pmid: 25705932 |
[9] |
Zhou W, Fang L, Fan Z, et al. Tunable catalysts for solvent-free biphasic systems:pickering interfacial catalysts over amphiphilic silica nanoparticles[J]. Journal of the American Chemical Society, 2014,136(13):4869-4872.
doi: 10.1021/ja501019n URL |
[10] | Wei L, Zhang M, Zhang X, et al. Pickering emulsion as an efficient platform for enzymatic reactions without stirring[J]. ACS Sustainable Chemistry & Engineering, 2016,4(12):6838-6843. |
[11] |
Pera-Titus M, Leclercq L, Clacens JM, et al. Pickering interfacial catalysis for biphasic systems:from emulsion design to green reactions[J]. Angewandte Chemie International Edition, 2015,54(7):2006-2021.
doi: 10.1002/anie.201402069 URL pmid: 25644631 |
[12] |
Binks B, Lumsdon S. Pickering emulsions stabilized by monodisperse latex particles:effects of particle size[J]. Langmuir, 2001,17(15):4540-4547.
doi: 10.1021/la0103822 URL |
[13] |
Soltani S, Madadlou A. Two-step sequential cross-linking of sugar beet pectin for transforming zein nanoparticle-based Pickering emulsions to emulgels[J]. Carbohydrate Polymers, 2015,136:738-743.
doi: 10.1016/j.carbpol.2015.09.100 URL pmid: 26572407 |
[14] |
Li Q, Xie B, Wang Y, et al. Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion[J]. Food Hydrocolloids, 2019,97:105214.
doi: 10.1016/j.foodhyd.2019.105214 URL |
[15] |
Kresge C, Leonowicz M, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359(6397):710.
doi: 10.1038/359710a0 URL |
[16] |
Zhu G, Li X, Fu X, et al. Electrospinning-based synjournal of highly ordered mesoporous silica fiber for lab-in-syringe enrichment of plasma peptidesf[J]. Chemical Communications, 2012,48(80):9980-9982.
doi: 10.1039/c2cc34761j URL pmid: 22895277 |
[17] |
Ding J, Wu JH, Liu JF, et al. Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization[J]. Plant Methods, 2014,10(1):39.
doi: 10.1186/1746-4811-10-39 URL |
[18] |
Zhu G, He X, Cai B, et al. In-syringe dispersive solid phase extraction:a novel format for electrospun fiber based microextraction[J]. Analyst, 2014,139(23):6266-6271.
doi: 10.1039/c4an01464b URL |
[19] |
Binks B, Lumsdon S. Transitional phase inversion of solid-stabilized emulsions using particle mixtures[J]. Langmuir, 2000,16(8):3748-3756.
doi: 10.1021/la991427q URL |
[20] |
Meng T, Bai R, Wang W, et al. Enzyme-loaded mesoporous silica particles with tuning wettability as a Pickering catalyst for enhancing biocatalysis[J]. Catalysts, 2019,9(1):78.
doi: 10.3390/catal9010078 URL |
[21] |
Ren G, Wang M, Wang L, et al. Dynamic covalent silica nanoparticles for pH-switchable Pickering emulsions[J]. Langmuir, 2018,34(20):5798-5806.
doi: 10.1021/acs.langmuir.8b00757 URL pmid: 29709197 |
[22] | Dong Z, Liu ZS, Shi J, et al. Carbon nanoparticle-stabilized Pickering emulsion as a sustainable and high-performance interfacial catalysis platform for enzymatic esterification/transesterification[J]. Acs Sustainable Chemistry & Engineering, 2019,7(8):7619-7629. |
[23] |
Diaz de Tuesta JL, Machado BF, Serp P, et al. Janus amphiphilic carbon nanotubes as Pickering interfacial catalysts for the treatment of oily wastewater by selective oxidation with hydrogen peroxide[J]. Catalysis Today, 2019,356:205-215.
doi: 10.1016/j.cattod.2019.07.012 URL |
[24] |
Zhou J, Qiao X, Binks BP, et al. Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles[J]. Langmuir, 2011,27(7):3308-3316.
doi: 10.1021/la1036844 URL pmid: 21344923 |
[25] |
Xie C, Meng S, Xue L, et al. Light and magnetic dual-responsive Pickering emulsion micro-reactors[J]. Langmuir, 2017,33(49):14139-14148.
doi: 10.1021/acs.langmuir.7b03642 URL pmid: 29148793 |
[26] |
Timgren A, Rayner M, Sjöö M, et al. Starch particles for food based Pickering emulsions[J]. Procedia Food Science, 2011,1:95-103.
doi: 10.1016/j.profoo.2011.09.016 URL |
[27] |
Li SN, Li C, Yang YZ, et al. Starch granules as Pickering emulsifiers:Role of octenylsuccinylation and particle size[J]. Food Chemistry, 2019,283:437-444.
doi: 10.1016/j.foodchem.2019.01.020 URL pmid: 30722895 |
[28] |
Ge S, Xiong L, Li M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles:Influence of starch variety and particle size[J]. Food Chemistry, 2017,234:339-347.
doi: 10.1016/j.foodchem.2017.04.150 URL pmid: 28551245 |
[29] |
Liu F, Tang CH. Soy protein nanoparticle aggregates as Pickering stabilizers for Oil-in-Water Emulsions[J]. Journal of Agricultural and Food Chemistry, 2013,61(37):8888-8898.
URL pmid: 23977961 |
[30] |
Liu F, Tang CH. Soy glycinin as food-grade Pickering stabilizers:Part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface[J]. Food Hydrocolloids, 2016,60:606-619.
doi: 10.1016/j.foodhyd.2015.04.025 URL |
[31] |
Ju M, Zhu G, Huang G, et al. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles[J]. Food Hydrocolloids, 2019,99:105329.
doi: 10.1016/j.foodhyd.2019.105329 URL |
[32] |
Zhang X, Zhou J, Chen J, et al. Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization[J]. Food Hydrocolloids, 2020,100:105440.
doi: 10.1016/j.foodhyd.2019.105440 URL |
[33] |
Zhang X, Liu Y, Wang Y, et al. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions[J]. Food Hydrocolloids, 2019,97:105180.
doi: 10.1016/j.foodhyd.2019.105180 URL |
[34] |
Li Q, Chen P, Li Y, et al. Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant:A bioinspired oxygen protection strategy[J]. Carbohydrate Polymers, 2020,229:115395.
doi: 10.1016/j.carbpol.2019.115395 URL pmid: 31826411 |
[35] |
Yu S, Zhang D, Jiang J, et al. Biphasic biocatalysis using a CO2-switchable Pickering emulsion[J]. Green Chemistry, 2019,21(15):4062-4068.
doi: 10.1039/C8GC03879A URL |
[36] |
Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chemical Society Reviews, 2013,42(15):6223-6235.
URL pmid: 23532151 |
[37] |
Wang M, Qi W, Su R, et al. Advances in carrier-bound and carrier-free immobilized nanobiocatalysts[J]. Chemical Engineering Science, 2015,135:21-32.
doi: 10.1016/j.ces.2015.03.051 URL |
[38] |
Wang Z, van Oers MC, Rutjes FP, et al. Polymersome colloidosomes for enzyme catalysis in a biphasic system[J]. Angewandte Chemie International Edition, 2012,51(43):10746-10750.
doi: 10.1002/anie.201206555 URL pmid: 23023929 |
[39] |
Yang X, Wang Y, Bai R, et al. Pickering emulsion-enhanced interfacial biocatalysis:tailored alginate microparticles act as particulate emulsifier and enzyme carrier[J]. Green Chemistry, 2019,21(9):2229-2233.
doi: 10.1039/C8GC03573C URL |
[40] | Wang M, Wang MJ, Zhang SM, et al. Pickering gel emulsion stabilized by enzyme immobilized polymeric nanoparticles:a robust and recyclable biocatalyst system for biphasic catalysis[J]. Reaction Chemistry & Engineering, 2019,4(8):1459-1465. |
[41] |
Wang L, Liu X, Jiang Y, et al. Silica nanoflowers-stabilized Pickering emulsion as a robust biocatalysis platform for enzymatic production of biodiesel[J]. Catalysts, 2019,9(12):1026.
doi: 10.3390/catal9121026 URL |
[42] |
Wang L, Liu X, Jiang Y, et al. Biocatalytic Pickering emulsions stabilized by lipase-immobilized carbon nanotubes for biodiesel production[J]. Catalysts, 2018,8(12):587.
doi: 10.3390/catal8120587 URL |
[43] | Jiang H, Li Y, Hong L, et al. Submicron inverse Pickering emulsions for highly efficient and recyclable enzymatic catalysis[J]. Chemistry-An Asian Journal, 2018,13(22):3533-3539. |
[44] |
Peng L, Feng A, Liu S, et al. Electrochemical stimulated Pickering emulsion for recycling of enzyme in biocatalysi[J]. ACS Applied Materials & Interfaces, 2016,8(43):29203-29207.
URL pmid: 27740743 |
[45] |
Jiang Z, Li X, Yang G, et al. pH-responsive surface activity and solubilization with novel pyrrolidone-based Gemini surfactants[J]. Langmuir, 2012,28(18):7174-7181.
doi: 10.1021/la3008156 URL pmid: 22502732 |
[46] |
Liu M, Chen X, Yang Z, et al. Tunable pickering emulsions with environmentally responsive hairy silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2016,8(47):32250-32258.
doi: 10.1021/acsami.6b11931 URL pmid: 27933833 |
[47] |
Chen Z, Zhou L, Bing W, et al. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis[J]. Journal of the American Chemical Society, 2014,136(20):7498-7504.
doi: 10.1021/ja503123m URL pmid: 24784766 |
[48] |
Zhang Q, Bai RX, Guo T, et al. Switchable Pickering emulsions stabilized by awakened TiO2 nanoparticle emulsifiers using UV/dark actuation[J]. ACS Applied Materials & Interfaces, 2015,7(33):18240-18246.
URL pmid: 26258618 |
[49] |
Chen J, Zhu C, Yang Z, et al. Thermally tunable Pickering emulsions stabilized by carbon-dot-incorporated core-shell nanospheres with fluorescence “On-Off” behavior[J]. Langmuir, 2017,34(1):273-283.
doi: 10.1021/acs.langmuir.7b03490 URL pmid: 29227679 |
[50] |
Zhu Y, Fu T, Liu K, et al. Thermoresponsive Pickering emulsions stabilized by silica nanoparticles in combination with alkyl polyoxyethylene ether nonionic surfactant[J]. Langmuir, 2017,33(23):5724-5733.
doi: 10.1021/acs.langmuir.7b00273 URL pmid: 28510456 |
[51] | Huang J, Yang H. A pH-switched Pickering emulsion catalytic system:high reaction efficiency and facile catalyst recycling[J]. Chem Commun, 2015,51(34):7333-7336. |
[52] |
Tang J, Zhou X, Cao S, et al. Pickering interfacial catalysts with CO2 and magnetic dual response for fast recovering in biphasic reaction[J]. ACS Applied Materials & Interfaces, 2019,11(17):16156-16163.
doi: 10.1021/acsami.9b00821 URL pmid: 30964259 |
[1] | ZHU Yong-an, WANG Miao, CAO Jing, YU He, CAO Zhen, JIN Mao-jun, WANG Jing, SHE Yong-xin. Research Progress in the Immobilization of Key Enzymes for Pesticides Residue Detection [J]. Biotechnology Bulletin, 2022, 38(1): 258-268. |
[2] | HAN Shu-ran, LU Lei. Preparation of Cross-Linked Enzyme Aggregates and Its Application in Laccase Immobilization [J]. Biotechnology Bulletin, 2019, 35(3): 164-170. |
[3] | Gao Qiyu, Xu Guangcui, Chen Hongli, Zhou Chenyan. Research Progress of Nanoparticles for Immobilized Enzymes [J]. Biotechnology Bulletin, 2013, 0(6): 20-24. |
[4] | Gao Qiyu, Li Hongbin, Chen Hongli, Kong Yu, Zhou Chenyan. Study on the Technology of CS-PLGA Nanospheres Immobilized Alkaline Phosphatase [J]. Biotechnology Bulletin, 2013, 0(5): 199-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||