Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 168-178.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0201
Previous Articles Next Articles
ZHANG Tian-tian(), LI Yong-zhen, SHEN Guo-ping, WANG Rong, ZHU De-rui, XING Jiang-wa()
Received:
2021-02-03
Online:
2022-01-26
Published:
2022-02-22
Contact:
XING Jiang-wa
E-mail:Zhangtiantian_88@163.com;xingjiangwa66@163.com
ZHANG Tian-tian, LI Yong-zhen, SHEN Guo-ping, WANG Rong, ZHU De-rui, XING Jiang-wa. Population Diversity of Isolated Halophilic and Halotolerant Bacteria from Hypersaline Salt Lakes and Evaluation of Ectoine Production[J]. Biotechnology Bulletin, 2022, 38(1): 168-178.
培养基 Culture medium | 分离菌株数量Isolated strain number | 总计 Total | ||
---|---|---|---|---|
茶卡盐湖 Chaka Salt Lake | 柯柯盐湖 Keke Salt Lake | 小柴旦盐湖Xiaochaidan Salt Lake | ||
5% NaCl | 38 | 18 | 14 | 70 |
10% NaCl | 9 | 22 | 12 | 43 |
Table 1 Statistics of isolated strains
培养基 Culture medium | 分离菌株数量Isolated strain number | 总计 Total | ||
---|---|---|---|---|
茶卡盐湖 Chaka Salt Lake | 柯柯盐湖 Keke Salt Lake | 小柴旦盐湖Xiaochaidan Salt Lake | ||
5% NaCl | 38 | 18 | 14 | 70 |
10% NaCl | 9 | 22 | 12 | 43 |
门Phylum | 属Genus | 5%氯化钠 5% NaCl | 10%氯化钠 10% NaCl | 菌株数量Strain number | 总计Total | ||
---|---|---|---|---|---|---|---|
茶卡盐湖 Chaka Salt Lake | 柯柯盐湖 Keke Salt Lake | 小柴旦盐湖 Xiaochaidan Salt Lake | |||||
Firmicutes | Bacillus | 32 | 10 | 20(42.6%) | 16(40%) | 6(23.1%) | 42 |
Staphylococcus | 15 | 15 | 8(17%) | 17(42.5%) | 5(19.3%) | 30 | |
Enterococcus | 3 | 0 | 0(0%) | 3(7.5%) | 0(0%) | 3 | |
Planococcus | 1 | 0 | 0(0%) | 0(0%) | 1(3.8%) | 1 | |
Oceanobacillus | 1 | 0 | 1(2.1%) | 0(0%) | 0(0%) | 1 | |
Proteobacteria | Halomonas | 11 | 15 | 10(21.3%) | 3(7.5%) | 13(50%) | 26 |
Pantoea | 6 | 0 | 6(12.8%) | 0(0%) | 0(0%) | 6 | |
Idiomarina | 1 | 3 | 2(4.2%) | 1(2.5%) | 1(3.8%) | 4 | |
总计Total | 70 | 43 | 47 | 40 | 26 | 113 |
Table 2 Molecular identification and abundance statistics of the isolated bacteria from typical salt lakes in Qaidam Basin
门Phylum | 属Genus | 5%氯化钠 5% NaCl | 10%氯化钠 10% NaCl | 菌株数量Strain number | 总计Total | ||
---|---|---|---|---|---|---|---|
茶卡盐湖 Chaka Salt Lake | 柯柯盐湖 Keke Salt Lake | 小柴旦盐湖 Xiaochaidan Salt Lake | |||||
Firmicutes | Bacillus | 32 | 10 | 20(42.6%) | 16(40%) | 6(23.1%) | 42 |
Staphylococcus | 15 | 15 | 8(17%) | 17(42.5%) | 5(19.3%) | 30 | |
Enterococcus | 3 | 0 | 0(0%) | 3(7.5%) | 0(0%) | 3 | |
Planococcus | 1 | 0 | 0(0%) | 0(0%) | 1(3.8%) | 1 | |
Oceanobacillus | 1 | 0 | 1(2.1%) | 0(0%) | 0(0%) | 1 | |
Proteobacteria | Halomonas | 11 | 15 | 10(21.3%) | 3(7.5%) | 13(50%) | 26 |
Pantoea | 6 | 0 | 6(12.8%) | 0(0%) | 0(0%) | 6 | |
Idiomarina | 1 | 3 | 2(4.2%) | 1(2.5%) | 1(3.8%) | 4 | |
总计Total | 70 | 43 | 47 | 40 | 26 | 113 |
Classification of bacteria | Strain code | Salinity range /(mol·L-1) | Optimal salinity /(mol·L-1) | Classification of halophiles | Ectoine accumulation /(mg·g -1CDW) | Strain code | Salinity range /(mol·L-1) | Optimal salinity /(mol·L-1) | Classification of halophiles | Ectoine accumulation /(mg·g -1 CDW) |
---|---|---|---|---|---|---|---|---|---|---|
Bacillus | C10 | 0.5-2.5 | 0.5 | Moderate halophile | 80.08 | K15 | 0-2.5 | 1.5 | Moderate halophile | 147.75 |
C11 | 0-2.0 | 2.0 | Moderate halophile | 220.56 | K17 | 0.5-2.5 | 1.0 | Moderate halophile | 10 | |
C12 | 0-3.0 | 0.5 | Moderate halophile | 64.47 | K26 | 0-2.5 | 1.5 | Moderate halophile | ND | |
C15 | 0.5-3.0 | 0.5 | Moderate halophile | 324.69 | K27 | 0-2.5 | 0.5 | Moderate halophile | 18.20 | |
C18 | 0-1.5 | 0.5 | Slight halophile | ND | K28 | 0-2.0 | 0.5 | Slight halophile | 32.26 | |
C20 | 0-1.5 | 0 | Halotolerant | ND | K29 | 0-1.5 | 0.5 | Slight halophile | 30.81 | |
C22 | 0-1.5 | 0 | Halotolerant | ND | K30 | 0-2.5 | 1.0 | Moderate halophile | 18.50 | |
C23 | 0-2.0 | 0 | Halotolerant | ND | K31 | 0-2.0 | 0.5 | Slight halophile | 77.60 | |
C24 | 0-2.5 | 0 | halotolerant | 31.93 | K32 | 0-2.0 | 1.0 | Moderate halophile | 100.35 | |
C25 | 0-3.0 | 1.0 | Moderate halophile | 80 | K37 | 0-2.5 | 1.5 | Moderate halophile | 135.84 | |
C26 | 0 -2.0 | 0 | halotolerant | ND | K39 | 0-2.5 | 0.5 | Moderate halophile | 23.88 | |
C27 | 0-3.0 | 1.0 | Moderate halophile | ND | K40 | 0-3.0 | 0 | Halotolerant | ND | |
C29 | 0-3.0 | 0 | Halotolerant | ND | K41 | 0-3.0 | 0.5 | Moderate halophile | 10.91 | |
C30 | 0-2.0 | 0 | Halotolerant | ND | K42 | 0-3.0 | 0 | Halotolerant | ND | |
C33 | 0-3.0 | 0.5 | Moderate halophile | 50.95 | K48 | 0-3.0 | 0 | Halotolerant | ND | |
C37 | 0-2.5 | 0 | Halotolerant | ND | X5 | 0.5-3.0 | 1.0 | Moderate halophile | 70.09 | |
C42 | 0.5-3.0 | 1.0 | Moderate halophile | 65.46 | X10 | 0-2.5 | 0.5 | Moderate halophile | 19.82 | |
C43 | 0.5-3.0 | 1.5 | Moderate halophile | 133.33 | X11 | 0-2.0 | 0.5 | Slight halophile | 23.99 | |
C50 | 0-1.5 | 0 | Halotolerant | ND | X20 | 0-2.0 | 0 | Halotolerant | ND | |
C52 | 0-1.0 | 0 | Halotolerant | ND | X22 | 0-2.5 | 0 | Halotolerant | ND | |
K11 | 0-2.5 | 1.5 | Moderate halophile | 275.20 | X33 | 0-3.0 | 0 | Halotolerant | ND | |
Halomonas | C8 | 0-2.5 | 0.5 | Moderate halophile | 30.85 | X4 | 0-3.0 | 1.0 | Moderate halophile | 125.18 |
C9 | 0-3.0 | 1.5 | Moderate halophile | ND | X6 | 0-3.0 | 1.0 | Moderate halophile | 53.98 | |
C13 | 0-3.0 | 0.5 | Moderate halophile | 122.38 | X9 | 0-3.0 | 0.5 | Moderate halophile | 41.80 | |
C17 | 0.5-3.0 | 0.5 | Moderate halophile | 18.66 | X21 | 0-3.0 | 1.0 | Moderate halophile | 100.39 | |
C34 | 0-3.0 | 0.5 | Moderate halophile | 15.71 | X26 | 0-3.0 | 1.0 | Moderate halophile | 369.10 | |
C39 | 0-3.0 | 0 | Halotolerant | ND | X27 | 0-3.0 | 1.5 | Moderate halophile | 239.51 | |
C40 | 0.5-3.0 | 2.0 | Moderate halophile | 11.25 | X28 | 0-3.0 | 1.0 | Moderate halophile | 296.56 | |
C41 | 0-3.0 | 0.5 | Moderate halophile | 32.35 | X31 | 0-3.0 | 1.5 | Moderate halophile | 41.37 | |
C44 | 0-3.0 | 2.5 | Moderate halophile | 21.82 | X32 | 0-3.0 | 0.5 | Moderate halophile | 65.23 | |
C51 | 0-2.5 | 0 | halotolerant | ND | X34 | 0-3.0 | 0.5 | Moderate halophile | 57.61 | |
K5 | 0-3.0 | 0.5 | Moderate halophile | 9.98 | X35 | 0-3.0 | 1.0 | Moderate halophile | 99.65 | |
K14 | 0-2.0 | 1.5 | Moderate halophile | 96.81 | X36 | 0-3.0 | 1.0 | Moderate halophile | 208.56 | |
K38 | 0-3.0 | 0.5 | Moderate halophile | 46.30 | X39 | 0-3.0 | 0.5 | Moderate halophile | 41.26 |
Table 3 Growth salinity,optimal salinity and ectoine accumulation of dominant strains isolated from salt lakes
Classification of bacteria | Strain code | Salinity range /(mol·L-1) | Optimal salinity /(mol·L-1) | Classification of halophiles | Ectoine accumulation /(mg·g -1CDW) | Strain code | Salinity range /(mol·L-1) | Optimal salinity /(mol·L-1) | Classification of halophiles | Ectoine accumulation /(mg·g -1 CDW) |
---|---|---|---|---|---|---|---|---|---|---|
Bacillus | C10 | 0.5-2.5 | 0.5 | Moderate halophile | 80.08 | K15 | 0-2.5 | 1.5 | Moderate halophile | 147.75 |
C11 | 0-2.0 | 2.0 | Moderate halophile | 220.56 | K17 | 0.5-2.5 | 1.0 | Moderate halophile | 10 | |
C12 | 0-3.0 | 0.5 | Moderate halophile | 64.47 | K26 | 0-2.5 | 1.5 | Moderate halophile | ND | |
C15 | 0.5-3.0 | 0.5 | Moderate halophile | 324.69 | K27 | 0-2.5 | 0.5 | Moderate halophile | 18.20 | |
C18 | 0-1.5 | 0.5 | Slight halophile | ND | K28 | 0-2.0 | 0.5 | Slight halophile | 32.26 | |
C20 | 0-1.5 | 0 | Halotolerant | ND | K29 | 0-1.5 | 0.5 | Slight halophile | 30.81 | |
C22 | 0-1.5 | 0 | Halotolerant | ND | K30 | 0-2.5 | 1.0 | Moderate halophile | 18.50 | |
C23 | 0-2.0 | 0 | Halotolerant | ND | K31 | 0-2.0 | 0.5 | Slight halophile | 77.60 | |
C24 | 0-2.5 | 0 | halotolerant | 31.93 | K32 | 0-2.0 | 1.0 | Moderate halophile | 100.35 | |
C25 | 0-3.0 | 1.0 | Moderate halophile | 80 | K37 | 0-2.5 | 1.5 | Moderate halophile | 135.84 | |
C26 | 0 -2.0 | 0 | halotolerant | ND | K39 | 0-2.5 | 0.5 | Moderate halophile | 23.88 | |
C27 | 0-3.0 | 1.0 | Moderate halophile | ND | K40 | 0-3.0 | 0 | Halotolerant | ND | |
C29 | 0-3.0 | 0 | Halotolerant | ND | K41 | 0-3.0 | 0.5 | Moderate halophile | 10.91 | |
C30 | 0-2.0 | 0 | Halotolerant | ND | K42 | 0-3.0 | 0 | Halotolerant | ND | |
C33 | 0-3.0 | 0.5 | Moderate halophile | 50.95 | K48 | 0-3.0 | 0 | Halotolerant | ND | |
C37 | 0-2.5 | 0 | Halotolerant | ND | X5 | 0.5-3.0 | 1.0 | Moderate halophile | 70.09 | |
C42 | 0.5-3.0 | 1.0 | Moderate halophile | 65.46 | X10 | 0-2.5 | 0.5 | Moderate halophile | 19.82 | |
C43 | 0.5-3.0 | 1.5 | Moderate halophile | 133.33 | X11 | 0-2.0 | 0.5 | Slight halophile | 23.99 | |
C50 | 0-1.5 | 0 | Halotolerant | ND | X20 | 0-2.0 | 0 | Halotolerant | ND | |
C52 | 0-1.0 | 0 | Halotolerant | ND | X22 | 0-2.5 | 0 | Halotolerant | ND | |
K11 | 0-2.5 | 1.5 | Moderate halophile | 275.20 | X33 | 0-3.0 | 0 | Halotolerant | ND | |
Halomonas | C8 | 0-2.5 | 0.5 | Moderate halophile | 30.85 | X4 | 0-3.0 | 1.0 | Moderate halophile | 125.18 |
C9 | 0-3.0 | 1.5 | Moderate halophile | ND | X6 | 0-3.0 | 1.0 | Moderate halophile | 53.98 | |
C13 | 0-3.0 | 0.5 | Moderate halophile | 122.38 | X9 | 0-3.0 | 0.5 | Moderate halophile | 41.80 | |
C17 | 0.5-3.0 | 0.5 | Moderate halophile | 18.66 | X21 | 0-3.0 | 1.0 | Moderate halophile | 100.39 | |
C34 | 0-3.0 | 0.5 | Moderate halophile | 15.71 | X26 | 0-3.0 | 1.0 | Moderate halophile | 369.10 | |
C39 | 0-3.0 | 0 | Halotolerant | ND | X27 | 0-3.0 | 1.5 | Moderate halophile | 239.51 | |
C40 | 0.5-3.0 | 2.0 | Moderate halophile | 11.25 | X28 | 0-3.0 | 1.0 | Moderate halophile | 296.56 | |
C41 | 0-3.0 | 0.5 | Moderate halophile | 32.35 | X31 | 0-3.0 | 1.5 | Moderate halophile | 41.37 | |
C44 | 0-3.0 | 2.5 | Moderate halophile | 21.82 | X32 | 0-3.0 | 0.5 | Moderate halophile | 65.23 | |
C51 | 0-2.5 | 0 | halotolerant | ND | X34 | 0-3.0 | 0.5 | Moderate halophile | 57.61 | |
K5 | 0-3.0 | 0.5 | Moderate halophile | 9.98 | X35 | 0-3.0 | 1.0 | Moderate halophile | 99.65 | |
K14 | 0-2.0 | 1.5 | Moderate halophile | 96.81 | X36 | 0-3.0 | 1.0 | Moderate halophile | 208.56 | |
K38 | 0-3.0 | 0.5 | Moderate halophile | 46.30 | X39 | 0-3.0 | 0.5 | Moderate halophile | 41.26 |
[1] | 沈硕. 青藏高原察尔汗盐湖地区可培养中度嗜盐菌的群落结构与多样性[J]. 微生物学报, 2017, 57(4):490-499. |
Shen S. Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake on Qinghai-Tibet Plateau[J]. Acta Microbiol Sin, 2017, 57(4):490-499. | |
[2] |
Han R, Zhang X, Liu J, et al. Microbial community structure and diversity within hypersaline Keke Salt Lake environments[J]. Can J Microbiol, 2017, 63(11):895-908.
doi: 10.1139/cjm-2016-0773 URL |
[3] |
Liu W, Zhang GJ, Xian WD, et al. Halomonas xiaochaidanensis sp. nov., isolated from a salt lake sediment[J]. Arch Microbiol, 2016, 198(8):761-766.
doi: 10.1007/s00203-016-1235-3 URL |
[4] | 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600. |
Zheng MP, Liu XF. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai-Tibet plateau, China[J]. Acta Geol Sin, 2010, 84(11):1585-1600. | |
[5] |
Sun YJ, Lai ZP, Long H, et al. Quartz OSL dating of archaeological sites in Xiao Qaidam Lake of the NE Qinghai-Tibetan Plateau and its implications for palaeoenvironmental changes[J]. Quat Geochronol, 2010, 5(2/3):360-364.
doi: 10.1016/j.quageo.2009.02.013 URL |
[6] | 朱德锐, 韩睿, 石晴, 等. 青藏高原盐湖细菌群落与超盐环境因素的相关性[J]. 中国环境科学, 2017, 37(12):4657-4666. |
Zhu DR, Han R, Shi Q, et al. The correlation between bacterial communities in salt lakes on the Qinghai-Tibet Plateau and super-salt environmental factors[J]. China Environ Sci, 2017, 37(12):4657-4666. | |
[7] | 郑绵平, 刘喜方, 赵文. 西藏高原盐湖的构造地球化学和生物学研究[J]. 地质学报, 2007, 81(12):1698-1708. |
Zheng MP, Liu XF, Zhao W. Tectonogeochemical and biological aspects of salt lakes on the Tibetan Plateau[J]. Acta Geol Sin, 2007, 81(12):1698-1708. | |
[8] | 李璐, 郝春博, 王丽华, 等. 巴丹吉林沙漠盐湖微生物多样性[J]. 微生物学报, 2015, 55(4):412-424. |
Li L, Hao CB, Wang LH, et al. Microbial diversity in salt lakes of Badain Jaran Desert[J]. Acta Microbiol Sin, 2015, 55(4):412-424. | |
[9] | 曹军卫, 沈萍, 李朝阳. 嗜极微生物[M]. 武汉: 武汉大学出版社, 2004. |
Cao JW, Shen P, Li (C/Z)Y. Extremophiles[M]. Wuhan: Wuhan University Press, 2004. | |
[10] | Mukherjee P, Mitra A, Roy M. Halomonas rhizobacteria of Avicennia marina of Indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production[J]. Front Microbiol, 2019(10):1207. |
[11] | 周延, 王芳, 王琳. 盐湖开发对柴达木盆地盐湖湖水细菌的多样性影响[J]. 化工进展, 2013, 32(S1):234-239. |
Zhou Y, Wang F, Wang L. Influence of salt lake exploitation on the bacterial diversity of the salt lakes in the Qaidam Basin[J]. Chem Ind Eng Prog, 2013, 32(S1):234-239. | |
[12] |
Gan LZ, Li XG, Zhang HM, et al. Preparation, characterization and functional properties of a novel exopolysaccharide produced by the halophilic strain Halomonas saliphila LCB169T[J]. Int J Biol Macromol, 2020, 156:372-380.
doi: 10.1016/j.ijbiomac.2020.04.062 URL |
[13] |
Wang J, Zhou J, Wang Y, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard Tuber wastewater:The potential multiple pathways and key microorganisms[J]. Water Res, 2020, 177:115734.
doi: 10.1016/j.watres.2020.115734 URL |
[14] |
Begmatov SA, Selitskaya OV, Vasileva LV, et al. Morphophysiological features of some cultivable bacteria from saline soils of the Aral sea region[J]. Eurasian Soil Sci, 2020, 53(1):90-96.
doi: 10.1134/S1064229320010044 URL |
[15] |
Wang Q, Cao Z, Liu Q, et al. Enhancement of COD removal in constructed wetlands treating saline wastewater:Intertidal wetland sediment as a novel inoculation[J]. J Environ Manage, 2019, 249:109398.
doi: 10.1016/j.jenvman.2019.109398 URL |
[16] | 王慧敏, 姚倩倩, 李月月, 等. 渗透压冲击下中度嗜盐菌Halomonas sp. 四氢嘧啶类相容性溶质的合成与释放[J]. 微生物学通报, 2018, 45(4):744-752. |
Wang HM, Yao QQ, Li YY, et al. Synjournal and release of ectoines in a moderate halophile Halomonas sp. Y subjected to osmotic shocks[J]. Microbiol China, 2018, 45(4):744-752. | |
[17] |
Nayak PK, Goode M, Chang DP, et al. Ectoine and hydroxyectoine stabilize antibodies in spray-dried formulations at elevated temperature and during a freeze/thaw process[J]. Mol Pharmaceutics, 2020, 17(9):3291-3297.
doi: 10.1021/acs.molpharmaceut.0c00395 URL |
[18] |
Chookietwattana K, Yuwa-Amornpitak T. Data on soil properties and halophilic bacterial densities in the Na Si Nuan secondary forest at kantharawichai district, maha sarakham, Thailand[J]. Data Brief, 2019, 27:104582.
doi: 10.1016/j.dib.2019.104582 pmid: 31673585 |
[19] |
Ning Y, Wu X, Zhang C, et al. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli[J]. Metab Eng, 2016, 36:10-18.
doi: 10.1016/j.ymben.2016.02.013 URL |
[20] | 赵婉雨, 杨渐, 董海良, 等. 柴达木盆地达布逊盐湖微生物多样性研究[J]. 地球与环境, 2013, 41(4):398-405. |
Zhao WY, Yang J, Dong HL, et al. Microbial diversity in the hypersaline dabuxun lake in Qaidam basin, China[J]. Earth Environ, 2013, 41(4):398-405. | |
[21] | 刘文, 杨渐, 吴耿, 等. 青藏高原北部湖泊沉积物中基于不同碳源可培养细菌多样性[J]. 盐湖研究, 2016, 24(2):92-101. |
Liu W, Yang J, Wu G, et al. Diversity of cultivable bacteria based on different carbon sources in the sediments of lakes on northern Qinghai-Tibet plateau[J]. J Salt Lake Res, 2016, 24(2):92-101. | |
[22] | 张欣, 刘静, 沈国平, 等. 基于高通量测序研究青藏高原茶卡盐湖微生物多样性[J]. 微生物学通报, 2017, 44(8):1834-1846. |
Zhang X, Liu J, Shen GP, et al. Illumina-based sequencing analysis of microbial community composition in Chaka Salt Lake in Qinghai-Tibet Plateau[J]. Microbiol China, 2017, 44(8):1834-1846. | |
[23] | 柴丽红, 崔晓龙, 彭谦, 等. 青海两盐湖细菌多样性研究[J]. 微生物学报, 2004, 44(3):271-275. |
Chai LH, Cui XL, Peng Q, et al. Bacterial diversity of two salt lakes in Qinghai[J]. Acta Microbiol Sin, 2004, 44(3):271-275. | |
[24] |
Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7. 0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 URL |
[25] |
Chen YH, Lu CW, Shyu YT, et al. Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches[J]. Sci Rep, 2017, 7(1):13037.
doi: 10.1038/s41598-017-13450-9 URL |
[26] | 田磊, 张芳, 沈国平, 等. Ectoine高产菌株Halomonas sp. 的鉴定及紫外诱变选育[J]. 生物学杂志, 2020, 37(4):31-35. |
Tian L, Zhang F, Shen GP, et al. Identification of high-yielding strain Halomonas sp. XH26 for producing ectoine and UV mutagenesis breeding[J]. J Biol, 2020, 37(4):31-35. | |
[27] |
Chen J, Liu P, Chu X, et al. Metabolic pathway construction and optimization of Escherichia coli for high-level ectoine production[J]. Curr Microbiol, 2020, 77(8):1412-1418.
doi: 10.1007/s00284-020-01888-6 pmid: 32189048 |
[28] | 刘静, 张欣, 沈国平, 等. 青藏高原小柴旦盐湖微生物群落结构及多样性[J]. 水生态学杂志, 2017, 38(5):55-64. |
Liu J, Zhang X, Shen GP, et al. Microbial community structure and diversity of Xiaochaidan salt lake on the Tibetan Plateau[J]. J Hydroecology, 2017, 38(5):55-64. | |
[29] |
Naghoni A, Emtiazi G, Amoozegar MA, et al. Microbial diversity in the hypersaline Lake Meyghan, Iran[J]. Sci Rep, 2017, 7(1):11522.
doi: 10.1038/s41598-017-11585-3 pmid: 28912589 |
[30] |
Escudero L, Oetiker N, Gallardo K, et al. A thiotrophic microbial community in an acidic brine lake in Northern Chile[J]. Antonie Van Leeuwenhoek, 2018, 111(8):1403-1419.
doi: 10.1007/s10482-018-1087-8 pmid: 29748902 |
[31] |
Jacob JH, Hussein EI, Shakhatreh MAK, et al. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing[J]. MicrobiologyOpen, 2017, 6(5):e00500.
doi: 10.1002/mbo3.2017.6.issue-5 URL |
[32] |
Tazi L, Breakwell DP, Harker AR, et al. Life in extreme environments:microbial diversity in Great Salt Lake, Utah[J]. Extremophiles, 2014, 18(3):525-535.
doi: 10.1007/s00792-014-0637-x URL |
[33] |
Almeida-Dalmet S, Sikaroodi M, Gillevet P, et al. Temporal study of the microbial diversity of the north arm of great salt lake, Utah, US[J]. Microorganisms, 2015, 3(3):310-326.
doi: 10.3390/microorganisms3030310 pmid: 27682091 |
[34] |
Boutaiba S, Hacene H, Bidle KA, et al. Microbial diversity of the hypersaline Sidi ameur and himalatt salt lakes of the Algerian Sahara[J]. J Arid Environ, 2011, 75(10):909-916.
pmid: 21909172 |
[35] |
Jaiani E, Kusradze I, Kokashvili T, et al. Microbial diversity and phage-host interactions in the Georgian coastal area of the black sea revealed by whole genome metagenomic sequencing[J]. Mar Drugs, 2020, 18(11):558.
doi: 10.3390/md18110558 URL |
[36] | 刘国红, 刘波, 林乃铨, 等. 芽孢杆菌的系统进化及其属分类学特征[J]. 福建农业学报, 2008, 23(4):436-449. |
Liu GH, Liu B, Lin NQ, et al. Phyletic evolution and taxonomic characteristics of Bacillus[J]. Fujian J Agric Sci, 2008, 23(4):436-449. | |
[37] | 刘国红, 刘波, 王阶平, 等. 基于可培养方法分析云南腾冲小空山火山谷芽胞杆菌分布特征[J]. 微生物学报, 2019, 59(6):1063-1075. |
Liu GH, Liu B, Wang JP, et al. Analysis of the distribution characteristics of Bacillus in the volcanic valley of Xiaokong Mountain in Tengchong, Yunnan based on cultivable methods[J]. Acta Microbiol Sin, 2019, 59(6):1063-1075. | |
[38] |
朱德锐, 刘建, 韩睿, 等. 青海湖嗜盐微生物系统发育与种群多样性[J]. 生物多样性, 2012, 20(4):495-504.
doi: 10.3724/SP.J.1003.2012.10224 |
Zhu DR, Liu J, Han R, et al. Population diversity and phylogeny of halophiles in the Qinghai Lake[J]. Biodivers Sci, 2012, 20(4):495-504. | |
[39] |
Neifar M, Chouchane H, Najjari A, et al. Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert[J]. Genomics, 2019, 111(6):1802-1814.
doi: 10.1016/j.ygeno.2018.12.003 URL |
[40] | 李坤珺, 龙健. 山西运城盐湖嗜盐细菌的系统发育与种群多样性[J]. 贵州农业科学, 2015, 43(11):95-101. |
Li KJ, Long J. Biodiversity of halophilic BacteriaIn Yuncheng salt lake of Shanxi Province[J]. Guizhou Agric Sci, 2015, 43(11):95-101. | |
[41] |
León MJ, Hoffmann T, Sánchez-Porro C, et al. Compatible solute synjournal and import by the moderate halophile Spiribacter salinus:physiology and genomics[J]. Front Microbiol, 2018, 9:108.
doi: 10.3389/fmicb.2018.00108 URL |
[42] |
Chen PW, Cui ZY, Ng HS, et al. Exploring the additive bio-agent impacts upon ectoine production by Halomonas salina DSM5928T using corn steep liquor and soybean hydrolysate as nutrient supplement[J]. J Biosci Bioeng, 2020, 130(2):195-199.
doi: 10.1016/j.jbiosc.2020.03.011 URL |
[43] |
Krutmann J. Ultraviolet A radiation-induced biological effects in human skin:relevance for photoaging and photodermatosis[J]. J Dermatol Sci, 2000, 23(Suppl 1):S22-S26.
doi: 10.1016/S0923-1811(99)00077-8 URL |
[44] |
Graf R, Anzali S, Buenger J, et al. The multifunctional role of ectoine as a natural cell protectant[J]. Clin Dermatol, 2008, 26(4):326-333.
doi: 10.1016/j.clindermatol.2008.01.002 URL |
[45] |
Sydlik U, Gallitz I, Albrecht C, et al. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation[J]. Am J Respir Crit Care Med, 2009, 180(1):29-35.
doi: 10.1164/rccm.200812-1911OC URL |
[46] |
Abdel-Aziz H, Wadie W, Abdallah DM, et al. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis[J]. Phytomedicine, 2013, 20(7):585-591.
doi: 10.1016/j.phymed.2013.01.009 pmid: 23453305 |
[47] |
Thuoc D, Hien TT, Sudesh K. Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam[J]. Ann Microbiol, 2019, 69(8):819-828.
doi: 10.1007/s13213-019-01474-7 |
[48] |
Chen WC, Yuan FW, Wang LF, et al. Ectoine production with indigenous Marinococcus sp. MAR2 isolated from the marine environment[J]. Prep Biochem Biotechnol, 2020, 50(1):74-81.
doi: 10.1080/10826068.2019.1663534 URL |
[49] |
Sajjad W, Qadir S, Ahmad M, et al. Ectoine:a compatible solute in radio-halophilicStenotrophomonassp. WMA-LM19 strain to prevent ultraviolet-induced protein damage[J]. J Appl Microbiol, 2018, 125(2):457-467.
doi: 10.1111/jam.13903 pmid: 29729069 |
[50] |
Anburajan L, Meena B, Sreelatha T, et al. Ectoine biosynjournal genes from the deep sea halophilic eubacteria, Bacillus clausii NIOT-DSB04:Its molecular and biochemical characterization[J]. Microb Pathog, 2019, 136:103693.
doi: 10.1016/j.micpath.2019.103693 URL |
[51] |
Chen Q, Zhang LH, Li XL, et al. Poly-β-hydroxybutyrate/ectoine co-production by ectoine-excreting strain Halomonas Salina[J]. Process Biochem, 2014, 49(1):33-37.
doi: 10.1016/j.procbio.2013.09.026 URL |
[52] |
Zhao Q, Li S, Lv P, et al. High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium[J]. Microb Cell Fact, 2019, 18(1):184.
doi: 10.1186/s12934-019-1230-x pmid: 31655591 |
[53] |
Sauer T, Galinski EA. Bacterial milking:a novel bioprocess for production of compatible solutes[J]. Biotechnol Bioeng, 1998, 57(3):306-313.
pmid: 10099207 |
[54] | 艾丽, 王川, 江科, 等. 古盐井中嗜盐菌的分离及四氢嘧啶的制备[J]. 生物技术, 2018, 28(6):597-602. |
Ai L, Wang C, Jiang K, et al. Isolation of halophilic bacteria from ancient salt well and production of ectoine[J]. Biotechnology, 2018, 28(6):597-602. | |
[55] | 姚倩倩, 顾向阳. 中度嗜盐菌Halomonas sp. 的分离和鉴定及其高产四氢嘧啶特性研究[J]. 南京农业大学学报, 2017, 40(1):109-115. |
Yao QQ, Gu XY. Isolation, identification and the high ectoine-producing characteristics of a moderately halophilic bacterium Halomonas sp. W2[J]. J Nanjing Agric Univ, 2017, 40(1):109-115. |
[1] | ZHAO Hong-hai, LIANG Chen, ZHANG Yu, DUAN Fang-meng, SONG Wen-wen, SHI Qian-qian, HUANG Wen-kun, PENG De-liang. Research Advances of Biology in Ditylenchus destructor Thorne,1945 [J]. Biotechnology Bulletin, 2021, 37(7): 45-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||