Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 44-50.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0406
Previous Articles Next Articles
LIU Xiang-dong1,2,3(), WU Jin-wen2,3, SHAHID Muhammad Qasim1,2,3
Received:
2021-03-30
Online:
2022-01-26
Published:
2022-02-22
LIU Xiang-dong, WU Jin-wen, SHAHID Muhammad Qasim. Development of Neo-tetraploid Rice and Research Progress on Its Heterosis Mechanism[J]. Biotechnology Bulletin, 2022, 38(1): 44-50.
[1] |
Chen L, Lou Q, Zhuang Y, et al. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus[J]. Planta, 2007, 225(3):603-614.
doi: 10.1007/s00425-006-0381-2 URL |
[2] |
Zhang J, Liu Y, Xia EH, et al. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression[J]. PNAS, 2015, 112(50):E7022-E7029.
doi: 10.1073/pnas.1515170112 URL |
[3] |
Koide Y, Kuniyoshi D, Kishima Y. Fertile tetraploids:new resources for future rice breeding?[J]. Front Plant Sci, 2020, 11:1231.
doi: 10.3389/fpls.2020.01231 URL |
[4] | Yu H, Lin T, Meng XB, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5):1156-1170. e14. |
[5] |
Chen RR, Feng ZY, Zhang XH, et al. A new way of rice breeding:polyploid rice breeding[J]. Plants, 2021, 10(3):422.
doi: 10.3390/plants10030422 URL |
[6] | 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略Ⅱ. 利用远缘杂交和多倍体双重优势进行超级稻育种[J]. 作物学报, 2001, 27(1):110-116. |
Cai DT, Yuan LP, Lu XG. A new strategy of rice breeding in the 21st century Ⅱ. searching a new pathway of rice breeding by utilization of double heterosis of wide cross and polyploidization[J]. Acta Agron Sin, 2001, 27(1):110-116. | |
[7] |
Oka HI. Studies on tetraploid rice VI. fertility variation and segregation ratios for several characters in tetraploid hybrids of rice, Oryza saliva L[J]. Cytologia, 1955, 20(3):258-266.
doi: 10.1508/cytologia.20.258 URL |
[8] | 严育瑞, 鲍文奎. 禾谷类作物的多倍体育种方法的研究Ⅰ. 四倍体水稻[J]. 农业学报, 1960, 11(1):1-19. |
Yan YR, Bao WK. Investigation on the breeding method of induced polyploids of some cereal crops Ⅰ. Tetraploid rice[J]. Acta Agriculturae Sinica, 1960, 11(1):1-19. | |
[9] | 宋文昌, 张玉华. 水稻四倍化及其对农艺性状和营养成分的影响[J]. 作物学报, 1992, 18(2):137-144. |
Song WC, Zhang YH. Rice tetraploidy and its effect on agronomic traits and nutritional constituents[J]. Acta Agron Sin, 1992, 18(2):137-144. | |
[10] |
Tu Y, Jiang A, Gan L, et al. Genome duplication improves rice root resistance to salt stress[J]. Rice, 2014, 7(1):15.
doi: 10.1186/s12284-014-0015-4 URL |
[11] |
Sun Y, Wu Y, Wang YZ, et al. Homoploid F1 hybrids and segmental allotetraploids of japonica and indica rice subspecies show similar and enhanced tolerance to nitrogen deficiency than parental lines[J]. J Exp Bot, 2021. DOI: 10.1093/jxb/erab184.
doi: 10.1093/jxb/erab184 |
[12] |
Wang LF, Cao S, Wang PT, et al. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance[J]. PNAS, 2021, 118(13):e2023981118.
doi: 10.1073/pnas.2023981118 URL |
[13] |
Yang PM, Huang QC, Qin GY, et al. Different drought-stress responses in photosynjournal and reactive oxygen metabolism between autotetraploid and diploid rice[J]. Photosynthetica, 2014, 52(2):193-202.
doi: 10.1007/s11099-014-0020-2 URL |
[14] |
Xu C, Bai Y, Lin X, et al. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies[J]. Mol Biol Evol, 2014, 31(5):1066-1076.
doi: 10.1093/molbev/msu085 URL |
[15] | Wu Y, Lin F, Zhou Y, et al. Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids[J]. Natl Sci Rev, 2021, 8(5):nwaa277. |
[16] | 刘宗贤, 秦瑞珍. 四倍体水稻花药培养筛选初级三体的细胞学依据[J]. 中国农业科学, 1995, 28(6):1-8. |
Liu ZX, Qin RZ. Cytological basis of selecting primary trisomics through anther culture of tetraploid rice(Oryza sativa L.)[J]. Sci Agricutura Sin, 1995, 28(6):1-8. | |
[17] | 郭海滨, 刘向东. 同源四倍体水稻研究[M]. 广州: 华南理工大学出版社, 2014. |
Guo HB, Liu XD. The research on autotetraploid rice[M]. Guangzhou: South China University of Technology Press, 2014. | |
[18] | 黄群策, 孙梅元, 邓启云. 多倍体水稻及其潜在价值[J]. 杂交水稻, 2001, 16(1):1-3. |
Huang QC, Sun MY, Deng QY. Polyploid rice and its potential value[J]. Hybrid Rice, 2001, 16(1):1-3 | |
[19] |
Zhao L, Han L, Xiao CX, et al. Rapid and pervasive development- and tissue-specific homeolog expression partitioning in newly formed inter-subspecific rice segmental allotetraploids[J]. BMC Genom, 2018, 19(1):1-10.
doi: 10.1186/s12864-017-4368-0 URL |
[20] |
Huang YQ, Huang QC, Li JZ, et al. Photosynthetic physiology and molecular response mechanisms of indica-Japonica intersubspecific tetraploid rice seedlings to ion beams[J]. J Plant Growth Regul, 2021, 40(2):722-735.
doi: 10.1007/s00344-020-10136-x URL |
[21] |
Tu SB, Luan L, Liu YH, et al. Production and heterosis analysis of rice autotetraploid hybrids[J]. Crop Sci, 2007, 47(6):2356-2363.
doi: 10.2135/cropsci2007.01.0058 URL |
[22] | Wu J, Shahid MQ, Chen L, et al. Polyploidy enhances F1 pollen sterility loci interactions that increase meiosis abnormalities and pollen sterility in autotetraploid rice[J]. Plant Physiol, 2015, 169(4):2700-2717. |
[23] | Chen L, Yuan Y, Wu J, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes[J]. Rice:N Y, 2019, 12(1):34. |
[24] |
Zhang X, Zuo B, Song Z, et al. Breeding and study of two new photoperiod- and thermo-sensitive genic male sterile lines of polyploid rice(Oryza sativa L.)[J]. Sci Rep, 2017, 7(1):14744.
doi: 10.1038/s41598-017-15241-8 URL |
[25] | 涂升斌, 孔繁伦, 徐琼芳, 等. 水稻同源四倍体杂种优势利用技术新体系的研究[J]. 中国科学院院刊, 2003, 18(6):426-428. |
Tu SB, Kong FL, Xu QF, et al. Breakthrough in hybrid rice breeding with autotetraploid[J]. Bull Chin Acad Sci, 2003, 18(6):426-428. | |
[26] |
Luan L, Tu SB, Long WB, et al. Cytogenetic studies on two F1 hybrids of autotetraploid rice varieties showing extremely high level of heterosis[J]. Plant Syst Evol, 2007, 267(1-4):205-213.
doi: 10.1007/s00606-007-0577-3 URL |
[27] |
Hu CY, Zeng YX, Lu YG, et al. High embryo sac fertility and diversity of abnormal embryo sacs detected in autotetraploid indica/japonica hybrids in rice by whole-mount eosin B-staining confocal laser scanning microscopy[J]. Plant Breed, 2009, 128(2):187-192.
doi: 10.1111/pbr.2009.128.issue-2 URL |
[28] |
He JH, Shahid MQ, Li YJ, et al. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids[J]. J Exp Bot, 2011, 62(13):4433-4445.
doi: 10.1093/jxb/err098 pmid: 21624978 |
[29] |
Wu J, Shahid MQ, Guo H, et al. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice[J]. Plant Reprod, 2014, 27(4):181-196.
doi: 10.1007/s00497-014-0250-2 URL |
[30] |
Chen L, Shahid MQ, Wu J, et al. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice[J]. Mol Genet Genomics, 2018, 293(6):1407-1420.
doi: 10.1007/s00438-018-1471-0 pmid: 29974305 |
[31] | 代西梅, 黄群策, 李国平, 等. 同源四倍体水稻花粉的发育特征[J]. 中国水稻科学, 2006, 20(2):165-170. |
Dai XM, Huang QC, Li GP, et al. Developmental characters of autotetraploid rice pollen[J]. Chin J Rice Sci, 2006, 20(2):165-170. | |
[32] |
He JH, Shahid MQ, Chen ZX, et al. Abnormal PMC microtubule distribution pattern and chromosome behavior resulted in low pollen fertility of an intersubspecific autotetraploid rice hybrid[J]. Plant Syst Evol, 2011, 291(3/4):257-265.
doi: 10.1007/s00606-010-0386-y URL |
[33] |
何金华, 程杏安, 陈志雄, 等. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化[J]. 作物学报, 2010, 36(10):1777-1785.
doi: 10.3724/SP.J.1006.2010.01777 |
He JH, Cheng XA, Chen ZX, et al. Changes in the pattern of organization of microtubules during meiosis in pollen mother cell of autotetraploid rice[J]. Acta Agron Sin, 2010, 36(10):1777-1785. | |
[34] |
Li X, Shahid MQ, Wu JW, et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. Int J Mol Sci, 2016, 17(4):499.
doi: 10.3390/ijms17040499 URL |
[35] |
Li X, Shahid MQ, Xia J, et al. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice[J]. BMC Genomics, 2017, 18(1):129.
doi: 10.1186/s12864-017-3526-8 URL |
[36] |
Li X, Yu H, Jiao YM, et al. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice[J]. PLoS One, 2018, 13(8):e0201854.
doi: 10.1371/journal.pone.0201854 URL |
[37] |
Li X, Shahid MQ, Wen MS, et al. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice[J]. BMC Plant Biol, 2020, 20(1):82.
doi: 10.1186/s12870-020-2290-0 URL |
[38] |
Wu J, Chen L, Shahid MQ, et al. Pervasive interactions of Sa and Sb loci cause high pollen sterility and abrupt changes in gene expression during meiosis that could be overcome by double neutral genes in autotetraploid rice[J]. Rice, 2017, 10(1):49.
doi: 10.1186/s12284-017-0188-8 URL |
[39] | 蔡得田, 陈建国, 陈冬玲, 等. 两个具多倍体减数分裂稳定性的多倍体水稻品系的选育[J]. 中国科学:C辑:生命科学, 2007, 37(2):217-226. |
Cai DT, Chen JG, Chen DL, et al. The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability[J]. Sci China:Ser C:Life Sci, 2007, 37(2):217-226. | |
[40] |
Guo H, Mendrikahy JN, Xie L, et al. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis[J]. Sci Rep, 2017, 7:40139.
doi: 10.1038/srep40139 URL |
[41] |
He Y, Wei Q, Ge J, et al. Genome duplication effects on pollen development and the interrelated physiological substances in tetraploid rice with polyploid meiosis stability[J]. Planta, 2010, 232(5):1219-1228.
doi: 10.1007/s00425-010-1249-z URL |
[42] |
He YC, Ge J, Wei Q, et al. Using a polyploid meiosis stability (PMeS)line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid[J]. Can J Plant Sci, 2011, 91(2):325-335.
doi: 10.4141/CJPS09190 URL |
[43] |
Xiong YG, Gan L, Hu YP, et al. OsMND1 regulates early meiosis and improves the seed set rate in polyploid rice[J]. Plant Growth Regul, 2019, 87(2):341-356.
doi: 10.1007/s10725-019-00476-4 URL |
[44] |
Ghaleb MAA, Li C, Shahid MQ, et al. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles[J]. BMC Plant Biol, 2020, 20(1):83.
doi: 10.1186/s12870-020-2291-z URL |
[45] |
Yu H, Shahid MQ, Li QH, et al. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice[J]. Rice, 2020, 13(1):32.
doi: 10.1186/s12284-020-00387-3 URL |
[46] |
Yu Z, Haage K, Streit VE, et al. A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations[J]. Theor Appl Genet, 2009, 118(6):1107-1119.
doi: 10.1007/s00122-009-0966-9 URL |
[47] |
Wu JW, Chen YM, Lin H, et al. Comparative cytological and transcriptome analysis revealed the normal pollen development process and up-regulation of fertility-related genes in newly developed tetraploid rice[J]. Int J Mol Sci, 2020, 21(19):7046.
doi: 10.3390/ijms21197046 URL |
[48] |
Bei XJ, Shahid MQ, Wu JW, et al. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice[J]. PLoS One, 2019, 14(4):e0214953.
doi: 10.1371/journal.pone.0214953 URL |
[49] |
Yu H, Li Q, Li Y, et al. Genomics analyses reveal unique classification, population structure and novel allele of neo-tetraploid rice[J]. Rice, 2021, 14(1):16.
doi: 10.1186/s12284-021-00459-y URL |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[8] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[9] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[10] | KONG De-zhen, NIE Ying-bin, CUI Feng-juan, SANG Wei, XU Hong-jun, TIAN Xiao-ming. Research Status and Prospect of Hybrid Wheat Seed Production [J]. Biotechnology Bulletin, 2023, 39(1): 95-103. |
[11] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[12] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[13] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[14] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[15] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||