Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 58-69.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0203
Previous Articles Next Articles
LIU Chuan-he1(), HE Han1, HE Xiu-gu2(), LAI Qiu-qin1, LIU Kai1, SHAO Xue-hua1, LAI Duo1, KUANG Shi-zi1, XIAO Wei-qiang1
Received:
2022-02-21
Online:
2022-11-26
Published:
2022-12-01
Contact:
HE Xiu-gu
E-mail:founderlch@126.com;hexiugu@gdaas.cn
LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling[J]. Biotechnology Bulletin, 2022, 38(11): 58-69.
样品Sample | CK | FH |
---|---|---|
SNP数量SNP Number | 209 800 | 215 075 |
基因区SNP数量Genic SNP | 191 018(91.05%) | 196 217(91.23%) |
基因间区SNP数量 Intergenic SNP | 18 782(8.95%) | 18 858(8.77%) |
杂合型Heterozygosity | 61.67% | 61.51% |
转换Transition | 65.44% | 65.40% |
颠换Transversion | 34.56% | 34.60% |
转换/颠换 Transition/Transversion | 1.89 | 1.89 |
Table 1 SNP sites statistics based on transcriptome
样品Sample | CK | FH |
---|---|---|
SNP数量SNP Number | 209 800 | 215 075 |
基因区SNP数量Genic SNP | 191 018(91.05%) | 196 217(91.23%) |
基因间区SNP数量 Intergenic SNP | 18 782(8.95%) | 18 858(8.77%) |
杂合型Heterozygosity | 61.67% | 61.51% |
转换Transition | 65.44% | 65.40% |
颠换Transversion | 34.56% | 34.60% |
转换/颠换 Transition/Transversion | 1.89 | 1.89 |
基因ID Gene ID | 基因注释Annotation | 差异倍数log2FC | 参考文献Reference |
---|---|---|---|
LOC109722013 | WRKY75 | 1.64 | 低温胁迫下诱导上调表达[ |
LOC109719592 | WRKY24-like | 1.63 | 抗寒、促进植株生长[ |
LOC109722010 | bHLH41(basic helix-loop-helix) | 2.14 | 低温、ABA、盐胁迫响应[ |
LOC109708332 | bHLH111-like | 1.46 | 花青素生物合成[ |
LOC109707663 | MYB-like protein AA | 1.62 | 抗寒[ |
LOC109723346 | MYB44-like | 1.48 | 参与MAPK级联反应,增强渗透压耐受性[ |
LOC109713884 | NAC35 | 1.96 | 参与植物生物与非生物逆境应答[ |
LOC109703579 | NAC94 | 2.37 | 启动子部位具有与低温胁迫相关的调控元件[ |
LOC109727211 | 多聚半乳糖醛酸酶Polygalacturonase | -2.59 | 参与果胶的降解[ |
LOC109711455 | β-葡萄糖苷酶β -glucosidase | 2.50 | 海巴戟抗寒相关[ |
LOC109712027 | 硝酸还原酶Nitrate reductase[NADH]-like | 3.68 | 调节植物氮代谢与非生物胁迫[ |
LOC109704466 | 富含半胱氨酸类受体蛋白激酶 Cysteine-rich receptor-like protein kinase | 2.72 | 感知胁迫信号和诱发免疫应答[ |
LOC109708872 | 丝氨酸/苏氨酸蛋白激酶PBL18 Serine/threonine-protein kinase PBL18 | 2.67 | 调节拟南芥的免疫应答[ |
LOC109726085 | 水通道蛋白NIP2-2 like(Nodulin-intrinsic protein) | 1.18 | 毛竹抗逆性调控[ |
LOC109711392 | ERF014(ethylene-responsive transcription factor) | 1.34 | 植物免疫调节[ |
LOC109707256 | AP2/ERF(APETALA2/ Ethylene-responsive transcription factor) | 1.53 | 逆境调控[ |
LOC109709179 | ERD6-like(early response to dehydration 6-like) | -2.40 | 糖运输[ |
LOC109727398 | HSP83(Heat shock protein) | 1.65 | 抵抗高温[ |
LOC109706855 | 谷氨酸受体Glutamate receptor | 2.55 | 应答多种生物和非生物环境胁迫[ |
Table 2 Screened key differential expression genes
基因ID Gene ID | 基因注释Annotation | 差异倍数log2FC | 参考文献Reference |
---|---|---|---|
LOC109722013 | WRKY75 | 1.64 | 低温胁迫下诱导上调表达[ |
LOC109719592 | WRKY24-like | 1.63 | 抗寒、促进植株生长[ |
LOC109722010 | bHLH41(basic helix-loop-helix) | 2.14 | 低温、ABA、盐胁迫响应[ |
LOC109708332 | bHLH111-like | 1.46 | 花青素生物合成[ |
LOC109707663 | MYB-like protein AA | 1.62 | 抗寒[ |
LOC109723346 | MYB44-like | 1.48 | 参与MAPK级联反应,增强渗透压耐受性[ |
LOC109713884 | NAC35 | 1.96 | 参与植物生物与非生物逆境应答[ |
LOC109703579 | NAC94 | 2.37 | 启动子部位具有与低温胁迫相关的调控元件[ |
LOC109727211 | 多聚半乳糖醛酸酶Polygalacturonase | -2.59 | 参与果胶的降解[ |
LOC109711455 | β-葡萄糖苷酶β -glucosidase | 2.50 | 海巴戟抗寒相关[ |
LOC109712027 | 硝酸还原酶Nitrate reductase[NADH]-like | 3.68 | 调节植物氮代谢与非生物胁迫[ |
LOC109704466 | 富含半胱氨酸类受体蛋白激酶 Cysteine-rich receptor-like protein kinase | 2.72 | 感知胁迫信号和诱发免疫应答[ |
LOC109708872 | 丝氨酸/苏氨酸蛋白激酶PBL18 Serine/threonine-protein kinase PBL18 | 2.67 | 调节拟南芥的免疫应答[ |
LOC109726085 | 水通道蛋白NIP2-2 like(Nodulin-intrinsic protein) | 1.18 | 毛竹抗逆性调控[ |
LOC109711392 | ERF014(ethylene-responsive transcription factor) | 1.34 | 植物免疫调节[ |
LOC109707256 | AP2/ERF(APETALA2/ Ethylene-responsive transcription factor) | 1.53 | 逆境调控[ |
LOC109709179 | ERD6-like(early response to dehydration 6-like) | -2.40 | 糖运输[ |
LOC109727398 | HSP83(Heat shock protein) | 1.65 | 抵抗高温[ |
LOC109706855 | 谷氨酸受体Glutamate receptor | 2.55 | 应答多种生物和非生物环境胁迫[ |
代谢物ID Metabolites ID | 名称 Compound | 分类 Classification | 差异倍数 log2FC | P值 P-value | VIP值 VIP |
---|---|---|---|---|---|
mws0064 | 圣草酚Eriodictyol | 多酚黄酮Polyphenol flavonoid | 14.07 | 0.0040 | 1.31 |
pme0376 | 柚皮素Naringenin | 黄酮Flavonoid | 10.31 | 0.023607 | 1.26 |
pme2960 | 柚皮素查尔酮Naringenin chalcone | 黄酮Flavonoid | 9.64 | 0.010187 | 1. 30 |
mws0914 | 短叶松素 Pinobanksin | 黄酮Flavonoid | 10.29 | 0.00147 | 1.32 |
pmn001668 | 芹菜素-3-邻鼠李糖苷Pigenin-3-O-rhamnoside | 黄酮糖苷Flavone glycoside | 1.61 | 0.0064 | 1.30 |
Lmtn002796 | 香橙素-7-葡萄糖苷Aromadendrin 7-glucoside | 黄酮糖苷Flavone glycoside | 1.15 | 0.0214 | 1.20 |
HJN041 | 表儿茶素葡萄糖苷Epicatechin glucoside | 黄酮糖苷Flavone glycoside | 10.18 | 0.0027 | 1.32 |
mws0712 | N-丙酰甘氨酸N-Propionylglycine | 氨基酸Amino acid | 1.33 | 0.0038 | 1.30 |
pme2559 | N-乙酰天门冬氨酸N-Acetylaspartate | 氨基酸Amino acid | 1.27 | 0.0026 | 1.28 |
pme2743 | N-苯基乙酰甘氨酸N-Phenylacetylglycine | 氨基酸Amino acid | 1.39 | 0.0023 | 1.31 |
pmb2591 | 乙酰色氨酸Acetyltryptophan | 氨基酸Amino acid | 2.35 | 0.0000 | 1.32 |
pmn001728 | N-乙酰-DL-色氨酸N-Acetyl-DL-tryptophan | 氨基酸Amino acid | 2.15 | 0.0001 | 1.32 |
pma0702 | N,N'-双(芥子酰基)亚精胺N,N'-Bis(sinapoyl)Spermidine | 多胺Polyamines | 11.11 | 0.0354 | 1.24 |
pme2049 | 2-羟基丁酸2-Hydroxybutanoic acid | 有机酸Organic acid | 11.09 | 0.0005 | 1.32 |
mws0178 | 绿原酸Chlorogenic acid | 酚酸Phenolic acid | 1.06 | 0.0114 | 1.24 |
Rfmb26201 | 丁香脂醇-乙酰氨基葡萄糖Syringaresinol-aceGlu | 糖类Carbohydrate | 1.03 | 0.0308 | 1.22 |
Lmjn003562 | 3,6'-O-二阿魏酰蔗糖3,6'-O-diferuloylsucrose | 糖类Carbohydrate | 1.15 | 0.0389 | 1.15 |
pmn001399 | 2,4,6,4'-四羟基二苯乙烯-2-O-D-吡喃葡萄糖苷 2,4,6,4'-Tetrahydroxy-stilbene -2-O-D-glucopyranoside | 糖苷Glycoside | 1.57 | 0.0088 | 1.30 |
Hmbp003234 | 1-O-咖啡酰基甘油1-O-Caffeoylglycerol | 脂类Lipid | 1.01 | 0.0312 | 1.20 |
pmn001318 | 1,3-O-二-对香豆酰基甘油1,3-O-Di-p-Coumaroyl glycerol | 脂类Lipid | 3.09 | 0.0018 | 1.31 |
Hmbn005456 | 1-O-咖啡酰-3-O-对-香豆酰甘油1-O-Caffeoyl-3-O-p-coumaroylglycerol | 脂类Lipid | 3.74 | 0.0002 | 1.32 |
Cmbn007148 | 1-O-果糖基-3-O-咖啡酰基甘油1-O-Feruloyl-3-O-caffeoylglycerol | 脂类Lipid | 4.25 | 0.0028 | 1.31 |
Hmbp006861 | 1,2-O-二阿魏酰甘油1,2-O-diferuloylglycerol | 脂类Lipid | 3.72 | 0.0050 | 1.30 |
pmp000091 | 1,3-二硬脂酸甘油酯Glyceryl 1,3-diferulate | 酯类Ester | 4.04 | 0.0275 | 1.25 |
mws0853 | 芥子醇Sinapyl alcohol | 苯酚Phenol | 2.07 | 0.0079 | 1.25 |
pmn001663 | 丁香树脂醇Syringaresinol | 萜类Terpene | 2.24 | 0.0081 | 1.28 |
Table 3 Screened key differential metabolites
代谢物ID Metabolites ID | 名称 Compound | 分类 Classification | 差异倍数 log2FC | P值 P-value | VIP值 VIP |
---|---|---|---|---|---|
mws0064 | 圣草酚Eriodictyol | 多酚黄酮Polyphenol flavonoid | 14.07 | 0.0040 | 1.31 |
pme0376 | 柚皮素Naringenin | 黄酮Flavonoid | 10.31 | 0.023607 | 1.26 |
pme2960 | 柚皮素查尔酮Naringenin chalcone | 黄酮Flavonoid | 9.64 | 0.010187 | 1. 30 |
mws0914 | 短叶松素 Pinobanksin | 黄酮Flavonoid | 10.29 | 0.00147 | 1.32 |
pmn001668 | 芹菜素-3-邻鼠李糖苷Pigenin-3-O-rhamnoside | 黄酮糖苷Flavone glycoside | 1.61 | 0.0064 | 1.30 |
Lmtn002796 | 香橙素-7-葡萄糖苷Aromadendrin 7-glucoside | 黄酮糖苷Flavone glycoside | 1.15 | 0.0214 | 1.20 |
HJN041 | 表儿茶素葡萄糖苷Epicatechin glucoside | 黄酮糖苷Flavone glycoside | 10.18 | 0.0027 | 1.32 |
mws0712 | N-丙酰甘氨酸N-Propionylglycine | 氨基酸Amino acid | 1.33 | 0.0038 | 1.30 |
pme2559 | N-乙酰天门冬氨酸N-Acetylaspartate | 氨基酸Amino acid | 1.27 | 0.0026 | 1.28 |
pme2743 | N-苯基乙酰甘氨酸N-Phenylacetylglycine | 氨基酸Amino acid | 1.39 | 0.0023 | 1.31 |
pmb2591 | 乙酰色氨酸Acetyltryptophan | 氨基酸Amino acid | 2.35 | 0.0000 | 1.32 |
pmn001728 | N-乙酰-DL-色氨酸N-Acetyl-DL-tryptophan | 氨基酸Amino acid | 2.15 | 0.0001 | 1.32 |
pma0702 | N,N'-双(芥子酰基)亚精胺N,N'-Bis(sinapoyl)Spermidine | 多胺Polyamines | 11.11 | 0.0354 | 1.24 |
pme2049 | 2-羟基丁酸2-Hydroxybutanoic acid | 有机酸Organic acid | 11.09 | 0.0005 | 1.32 |
mws0178 | 绿原酸Chlorogenic acid | 酚酸Phenolic acid | 1.06 | 0.0114 | 1.24 |
Rfmb26201 | 丁香脂醇-乙酰氨基葡萄糖Syringaresinol-aceGlu | 糖类Carbohydrate | 1.03 | 0.0308 | 1.22 |
Lmjn003562 | 3,6'-O-二阿魏酰蔗糖3,6'-O-diferuloylsucrose | 糖类Carbohydrate | 1.15 | 0.0389 | 1.15 |
pmn001399 | 2,4,6,4'-四羟基二苯乙烯-2-O-D-吡喃葡萄糖苷 2,4,6,4'-Tetrahydroxy-stilbene -2-O-D-glucopyranoside | 糖苷Glycoside | 1.57 | 0.0088 | 1.30 |
Hmbp003234 | 1-O-咖啡酰基甘油1-O-Caffeoylglycerol | 脂类Lipid | 1.01 | 0.0312 | 1.20 |
pmn001318 | 1,3-O-二-对香豆酰基甘油1,3-O-Di-p-Coumaroyl glycerol | 脂类Lipid | 3.09 | 0.0018 | 1.31 |
Hmbn005456 | 1-O-咖啡酰-3-O-对-香豆酰甘油1-O-Caffeoyl-3-O-p-coumaroylglycerol | 脂类Lipid | 3.74 | 0.0002 | 1.32 |
Cmbn007148 | 1-O-果糖基-3-O-咖啡酰基甘油1-O-Feruloyl-3-O-caffeoylglycerol | 脂类Lipid | 4.25 | 0.0028 | 1.31 |
Hmbp006861 | 1,2-O-二阿魏酰甘油1,2-O-diferuloylglycerol | 脂类Lipid | 3.72 | 0.0050 | 1.30 |
pmp000091 | 1,3-二硬脂酸甘油酯Glyceryl 1,3-diferulate | 酯类Ester | 4.04 | 0.0275 | 1.25 |
mws0853 | 芥子醇Sinapyl alcohol | 苯酚Phenol | 2.07 | 0.0079 | 1.25 |
pmn001663 | 丁香树脂醇Syringaresinol | 萜类Terpene | 2.24 | 0.0081 | 1.28 |
基因名称 Gene name | 基因差异倍数 log2FC | 代谢物名称 Metabolite name | 代谢物差异倍数 log2FC | 相关系数 Correlation coefficient |
---|---|---|---|---|
水通道蛋白NIP2-2-like[ | 1.18 | 丁香脂醇-乙酰氨基葡萄糖 Syringaresinol-aceGlu | 1.03 | 0.83 |
羟基肉桂酰转移酶 Hydroxycinnamoyltransferase 4-like[ | -1.05 | 绿原酸Chlorogenic acid | 1.06 | -0.84 |
-1.05 | 圣草酚Eriodictyol | 14.07 | -0.96 | |
AP2/ERF[ | 1.53 | 1-O-咖啡酰-3-O-对-香豆酰甘油 1-O-Caffeoyl-3-O-p-coumaroylglycerol | 3.74 | 0.87 |
β-葡萄糖苷酶Beta-glucosidase[ | 2.50 | 丁香脂醇-乙酰氨基葡萄糖Syringaresinol-ace Glu | 1.03 | 0.95 |
2.50 | 3,6'-O-二阿魏酰蔗糖3,6'-O-diferuloylsucrose | 1.15 | 0.91 | |
2.50 | 1-O-果糖基-3-O-咖啡酰基甘油 1-O-Feruloyl-3-O-caffeoylglycerol | 4.25 | 0.98 | |
硝酸还原酶NADH-like[ | 3.68 | N-苯基乙酰甘氨酸N-Phenylacetylglycine | 1.39 | 0.99 |
烟草胺转氨酶Nicotianamine aminotransferase A-like[ | 1.17 | N-苯基乙酰甘氨酸N-Phenylacetylglycine | 1.39 | 0.88 |
Table 4 Combined analysis of transcriptomes and metabolomes for related differential metabolites and genes
基因名称 Gene name | 基因差异倍数 log2FC | 代谢物名称 Metabolite name | 代谢物差异倍数 log2FC | 相关系数 Correlation coefficient |
---|---|---|---|---|
水通道蛋白NIP2-2-like[ | 1.18 | 丁香脂醇-乙酰氨基葡萄糖 Syringaresinol-aceGlu | 1.03 | 0.83 |
羟基肉桂酰转移酶 Hydroxycinnamoyltransferase 4-like[ | -1.05 | 绿原酸Chlorogenic acid | 1.06 | -0.84 |
-1.05 | 圣草酚Eriodictyol | 14.07 | -0.96 | |
AP2/ERF[ | 1.53 | 1-O-咖啡酰-3-O-对-香豆酰甘油 1-O-Caffeoyl-3-O-p-coumaroylglycerol | 3.74 | 0.87 |
β-葡萄糖苷酶Beta-glucosidase[ | 2.50 | 丁香脂醇-乙酰氨基葡萄糖Syringaresinol-ace Glu | 1.03 | 0.95 |
2.50 | 3,6'-O-二阿魏酰蔗糖3,6'-O-diferuloylsucrose | 1.15 | 0.91 | |
2.50 | 1-O-果糖基-3-O-咖啡酰基甘油 1-O-Feruloyl-3-O-caffeoylglycerol | 4.25 | 0.98 | |
硝酸还原酶NADH-like[ | 3.68 | N-苯基乙酰甘氨酸N-Phenylacetylglycine | 1.39 | 0.99 |
烟草胺转氨酶Nicotianamine aminotransferase A-like[ | 1.17 | N-苯基乙酰甘氨酸N-Phenylacetylglycine | 1.39 | 0.88 |
[1] |
Conrath U. Molecular aspects of defence priming[J]. Trends Plant Sci, 2011, 16(10):524-531.
doi: 10.1016/j.tplants.2011.06.004 pmid: 21782492 |
[2] |
Zhang XH, Teixeira da Silva JA, Niu MY, et al. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves[J]. Sci Rep, 2017, 7:42165.
doi: 10.1038/srep42165 URL |
[3] |
Barrero-Gil J, Salinas J. Gene regulatory networks mediating cold acclimation: The CBF pathway[J]. Adv Exp Med Biol, 2018, 1081: 3-22.
doi: 10.1007/978-981-13-1244-1_1 pmid: 30288701 |
[4] |
Robison JD, Yamasaki Y, Randall SK. The ethylene signaling pathway negatively impacts CBF/DREB-regulated cold response in soybean(Glycine max)[J]. Front Plant Sci, 2019, 10:121.
doi: 10.3389/fpls.2019.00121 URL |
[5] | 王安邦, 金志强, 刘菊华, 等. 香蕉寒害研究现状及展望[J]. 生物技术通报, 2014(8):28-33. |
Wang AB, Jin ZQ, Liu JH, et al. The Current situation and prospects of banana chilling stress[J]. Biotechnol Bull, 2014(8):28-33. | |
[6] | 刘传和, 贺涵, 匡石滋, 等. 菠萝园冬季防寒覆盖的调控效果[J]. 中国农业气象, 2020, 41(4):230-239. |
Liu CH, He H, Kuang SZ, et al. Regulatory effects of covering-practices in orchard for pineapple cold-proofing in winter[J]. Chin J Agrometeorology, 2020, 41(4):230-239. | |
[7] | 刘传和, 凡超. 地膜/网纱覆盖对冬季菠萝园小环境及菠萝生长和果实品质特性的影响[J]. 西北植物学报, 2016, 36(1):139-146. |
Liu CH, Fan C. Regulation of film/gauze covering on micro-environmental factors in pineapple plantation and its effects on growth and quality properties of pineapple[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(1):139-146. | |
[8] |
Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nat Biotechnol, 2019, 37(8):907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807 |
[9] |
Pertea M, Pertea GM, Antonescu CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3):290-295.
doi: 10.1038/nbt.3122 pmid: 25690850 |
[10] |
Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17):3389-3402.
doi: 10.1093/nar/25.17.3389 pmid: 9254694 |
[11] |
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000Research, 2013, 2:188.
doi: 10.12688/f1000research.2-188.v1 pmid: 24555089 |
[12] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.
doi: 10.1186/s13059-014-0550-8 URL |
[13] | 卢婷, 杨莉, 胡威, 等. 柑橘抗逆基因WRKY75的克隆与表达分析[J]. 江西农业大学学报, 2021, 43(1):82-93. |
Lu T, Yang L, Hu W, et al. Cloning and expression analysis of Citrus WRKY75 genes in response to abiotic stresses[J]. Acta Agric Univ Jiangxiensis, 2021, 43(1):82-93. | |
[14] |
Li Y, Li X, Wei JT, et al. Genome-wide identification and analysis of the WRKY gene family and cold stress response in Acer truncatum[J]. Genes, 2021, 12(12):1867.
doi: 10.3390/genes12121867 URL |
[15] | 何洁, 顾秀容, 魏春华, 等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析[J]. 园艺学报, 2016, 43(2):281-294. |
He J, Gu XR, Wei CH, et al. Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermelon[J]. Acta Hortic Sin, 2016, 43(2):281-294. | |
[16] |
Li XL, Cheng YD, et al. Weighted gene coexpression correlation network analysis reveals a potential molecular regulatory mechanism of anthocyanin accumulation under different storage temperatures in ‘Friar’ plum[J]. BMC Plant Biol, 2021, 21(1):576.
doi: 10.1186/s12870-021-03354-2 URL |
[17] | 赵艳宁. 白菜型冬油菜响应低温胁迫的蛋白质组及转录组分析[D]. 兰州: 甘肃农业大学, 2020. |
Zhao YN. Proteome and transcriptome analysis of response to low temperature stress in winter rapeseed(Brassica rapa L.)[D]. Lanzhou: Gansu Agricultural University, 2020. | |
[18] | Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling[J]. PLoS One, 2013, 8(2):e57547. |
[19] | 王洋, 柏锡. 大豆NAC基因家族生物信息学分析[J]. 大豆科学, 2014, 33(3):325-333. |
Wang Y, Bai X. Bioinformatics analysis of NAC gene family in Glycine max L[J]. Soybean Sci, 2014, 33(3):325-333. | |
[20] | 周棋赢, 韩月华, 等. 茶树NAC基因的鉴定及其在逆境反应中的表达调控分析[J]. 信阳师范学院学报:自然科学版, 2020, 33(4):567-578. |
Zhou QY, Han YH, et al. Genome-wide identification of NAC genes in tea plant and its expression regulation in stress response[J]. J Xinyang Norm Univ Nat Sci Ed, 2020, 33(4):567-578. | |
[21] | 寇晓虹, 罗云波. 植物多聚半乳糖醛酸酶功能研究进展[J]. 生物技术通报, 2003(5):15-18. |
Kou XH, Luo YB. Research advance in function of plant polygalacturonase[J]. Biotechnol Inf, 2003(5):15-18. | |
[22] | 赵帅. 海巴戟抗寒种质的筛选及抗寒机制研究[D]. 海口: 海南大学, 2018. |
Zhao S. Morinda citrifolia study on the screening of cold resistant germplasm and the mechanism of cold resistance[D]. Haikou: Hainan University, 2018. | |
[23] | 刘丽, 甘志军, 王宪泽. 植物氮代谢硝酸还原酶水平调控机制的研究进展[J]. 西北植物学报, 2004, 24(7):1355-1361. |
Liu L, Gan ZJ, Wang XZ. Advances of studies on the regulation of nitrate metabolism of plants at nitrate reductase level[J]. Acta Bot Boreali Occidentalia Sin, 2004, 24(7):1355-1361. | |
[24] |
耿艳飞, 吕明芳. 植物富含半胱氨酸类受体激酶家族研究进展[J]. 浙江农业学报, 2020, 32(12):2303-2312.
doi: 10.3969/j.issn.1004-1524.2020.12.22 |
Geng YF, Lv MF. Progress on cysteine-rich receptor-like kinase family in plants[J]. Acta Agric Zhejiangensis, 2020, 32(12):2303-2312.
doi: 10.3969/j.issn.1004-1524.2020.12.22 |
|
[25] | Lin ZJD, Liebrand TWH, et al. PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses[J]. Plant Physiol, 2015, 169(4):2950-2962. |
[26] | 朱成磊, 杨克彬, 徐秀荣, 等. 毛竹NIP基因的分子特征及应答胁迫的表达模式[J]. 林业科学, 2021, 57(1):64-76. |
Zhu CL, Yang KB, Xu XR, et al. Molecular characteristics of NIP genes in phyllostachys edulis and their expression patterns in response to stresses[J]. Sci Silv Sin, 2021, 57(1):64-76. | |
[27] |
Zhang HJ, Hong YB, Huang L, et al. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea[J]. Sci Rep, 2016, 6:30251.
doi: 10.1038/srep30251 URL |
[28] |
Zhou LX, Yarra R. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions[J]. Int J Mol Sci, 2021, 22(6):2821.
doi: 10.3390/ijms22062821 URL |
[29] |
Kiyosue T, Abe H, et al. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter[J]. Biochim Biophys Acta, 1998, 1370(2):187-191.
pmid: 9545564 |
[30] | Zha Q, Xi XJ, He YN, et al. Interaction of VvbZIP60s and VvHSP83 in response to high-temperature stress in grapes[J]. Gene, 2022, 810:146053. |
[31] |
何明洁, 孙伊辰, 程晓园, 等. 植物谷氨酸受体的研究进展[J]. 植物学报, 2016, 51(6):827-840.
doi: 10.11983/CBB15212 |
He MJ, Sun YC, Chen XY, et al. Current research advances on glutamate receptors(GLRs)in plants[J]. Chinese Bull Bot, 2016, 51(6):827-840. | |
[32] | 巩元勇, 郭书巧, 等. 陆地棉GhNIP5. 1基因的电子克隆及生物信息学分析[J]. 江苏农业学报, 2013(3):682-684. |
Gong YY, Guo SQ, et al. In silico cloning and bioinformatics analysis of aquaporin gene GhNIP5. 1 from upland cotton(Gossypium hirsutum)[J]. Jiangsu J Agric Sci, 2013(3):682-684. | |
[33] | 葛文雅, 惠伟, 闫洪波, 等. 鸭梨PbHCT3基因的克隆及表达分析[J]. 西北植物学报, 2012, 32(5):871-875. |
Ge WY, Hui W, Yan HB, et al. Cloning and expression analysis of PbHCT3 gene in Pyrus bretschneideri Rehd. cv. ‘Yali’[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(5):871-875. | |
[34] | Beasley JT, Bonneau JP, Johnson AAT. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat(Triticum aestivum L.)[J]. PLoS One, 2017, 12(5):e0177061. |
[35] | Chen CJ, Zhang YF, Xu ZQ, et al. Transcriptome profiling of the pineapple under low temperature to facilitate its breeding for cold tolerance[J]. PLoS One, 2016, 11(9):e0163315. |
[36] | Zhao MG, Chen L, et al. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis[J]. Plant Physiol, 2009(2):755-767. |
[37] | 刘荣, 刘清国, 范建新, 等. 果树抗寒性生理生化及分子机理研究进展[J]. 分子植物育种, 2017, 15(5):2028-2034. |
Liu R, Liu QG, Fan JX, et al. Research advances in the cold-resistance physiology biochemistry and molecular mechanism in fruit crops[J]. Mol Plant Breed, 2017, 15(5):2028-2034. | |
[38] |
Nakabayashi R, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. Plant J, 2014, 77(3):367-379.
doi: 10.1111/tpj.12388 URL |
[39] |
Fang S, et al. Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carboh-ydrate accumulation[J]. Field Crops Res, 2019, 231:105-114.
doi: 10.1016/j.fcr.2018.11.012 URL |
[40] |
Zhang PP, Fu JM, Hu LX. Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass(Poa pratensis)[J]. Ecotoxicology, 2012, 21(7):1911-1918.
doi: 10.1007/s10646-012-0924-1 URL |
[41] | 张健, 唐露, 冉启凡, 等. 植物响应低温胁迫转录组测序研究进展[J]. 分子植物育种, 2020, 18(6):1849-1866. |
Zhang J, Tang L, Ran QF, et al. Advances in RNA sequencing in response to low temperature stress in plants[J]. Mol Plant Breed, 2020, 18(6):1849-1866. | |
[42] |
Qian S, Rai D, Heller WT. Alamethicin disrupts the cholesterol distribution in dimyristoyl phosphatidylcholine-cholesterol lipid bilayers[J]. J Phys Chem B, 2014, 118(38):11200-11208.
doi: 10.1021/jp504886u URL |
[43] | 陈四龙, 黄家权, 雷永, 等. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析[J]. 作物学报, 2012, 38(2):245-255. |
Chen SL, Huang JQ, Lei Y, et al. Cloning and expression analysis of lysophosphatidic acid acyltransferase(LPAT)encoding gene in peanut[J]. Acta Agron Sin, 2012, 38(2):245-255. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(10): 219-230. |
[3] | JIN Jiao-jiao, LIU Zi-gang, MI Wen-bo, XU Ming-xia, ZOU Ya, XU Chun-mei, ZHAO Cai-xia. Identification of Low Temperature Stress-responsive Genes Regulating Photosynthetic Characteristics in the Leaves of Brassica napus by RNA-Seq [J]. Biotechnology Bulletin, 2022, 38(4): 126-142. |
[4] | LIU Chuan-he, HE Han, HE Xiu-gu, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Analysis of Differential Metabolites and Bacterial Community Structure in Soils of a Pineapple Orchard in Different Continuous-cropping Years [J]. Biotechnology Bulletin, 2021, 37(8): 162-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||