Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 184-194.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0472
Previous Articles Next Articles
LIU Chao(), CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong()
Received:
2021-04-12
Online:
2022-02-26
Published:
2022-03-09
Contact:
HAN Li-hong
E-mail:liuchao_80@163.com;hanlihong9527@126.com
LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants[J]. Biotechnology Bulletin, 2022, 38(2): 184-194.
[1] |
Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J]. New Phytol, 2003, 157(3):423-447.
doi: 10.1046/j.1469-8137.2003.00695.x URL |
[2] |
Raghothama K, Karthikeyan A. Phosphate acquisition[J]. Plant and Soil, 2005, 274(1-2):37.
doi: 10.1007/s11104-004-2005-6 URL |
[3] |
Williamson LC, Ribrioux SPCP, Fitter AH, et al. Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiol, 2001, 126(2):875-882.
pmid: 11402214 |
[4] |
Lin WY, Lin SI, Chiou TJ. Molecular regulators of phosphate homeostasis in plants[J]. J Exp Bot, 2009, 60(5):1427-1438.
doi: 10.1093/jxb/ern303 URL |
[5] | Baek D, Chun HJ, Yun DJ, et al. Cross-talk between phosphate starvation and other environmental stress signaling pathways in plants[J]. Mol Cells, 2017, 40(10):697-705. |
[6] |
Ham BK, Chen J, Yan Y, et al. Insights into plant phosphate sensing and signaling[J]. Curr Opin Biotechnol, 2018, 49:1-9.
doi: 10.1016/j.copbio.2017.07.005 URL |
[7] |
Dong JS, Ma GJ, Sui LQ, et al. Inositol pyrophosphate InsP8 Acts as an intracellular phosphate signal in Arabidopsis[J]. Mol Plant, 2019, 12(11):1463-1473.
doi: 10.1016/j.molp.2019.08.002 URL |
[8] |
Yang ZL, Yang J, Wang Y, et al. PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice[J]. Plant Cell, 2020, 32(3):740-757.
doi: 10.1105/tpc.19.00685 URL |
[9] |
Wang YL, Lambers H. Root-released organic anions in response to low phosphorus availability:recent progress, challenges and future perspectives[J]. Plant Soil, 2020, 447(1/2):135-156.
doi: 10.1007/s11104-019-03972-8 URL |
[10] |
Deng S, Lu L, Li J, et al. Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice[J]. J Exp Bot, 2020, 71(14):4321-4332.
doi: 10.1093/jxb/eraa179 URL |
[11] | Wang Y, Lysøe E, Armarego-Marriott T, et al. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat[J]. J Exp Bot, 2018, 69(15):3759-3771. |
[12] |
Xu W, Zhang Q, Yuan W, et al. The genome evolution and low-phosphorus adaptation in white lupin[J]. Nat Commun, 2020, 11(1):1069.
doi: 10.1038/s41467-020-14891-z URL |
[13] |
Vengavasi K, Pandey R, Abraham G, et al. Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress[J]. Genes, 2017, 8(12):341.
doi: 10.3390/genes8120341 URL |
[14] |
Wendrich JR, Yang BJ, Vandamme N, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions[J]. Genes, 2020, 370(6518):eaay4970. DOI: 10. 1126/science. aay4970.
doi: 10. 1126/science. aay4970 |
[15] |
Osorio MB, Ng S, Berkowitz O, et al. SPX4 Acts on PHR1-dependent and -independent regulation of shoot phosphorus status in Arabidopsis[J]. Plant Physiol, 2019, 181(1):332-352.
doi: 10.1104/pp.18.00594 URL |
[16] |
Jia H, Ren H, Gu M, et al. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiol, 2011, 156(3):1164-1175.
doi: 10.1104/pp.111.175240 URL |
[17] |
Chang MX, Gu M, Xia YW, et al. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes[J]. Plant Physiol, 2019, 179(2):656-670.
doi: 10.1104/pp.18.01097 pmid: 30567970 |
[18] |
Jyoti A, Kaushik S, Srivastava VK, et al. The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants[J]. Semin Cell Dev Biol, 2019, 96:77-90.
doi: 10.1016/j.semcdb.2019.03.010 URL |
[19] |
Xu L, Wang F, Li R, et al. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice[J]. J Integr Plant Biol, 2020, 62(7):1017-1033.
doi: 10.1111/jipb.v62.7 URL |
[20] |
Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes Dev, 2001, 15(16):2122-2133.
doi: 10.1101/gad.204401 URL |
[21] |
Zhou J, Jiao F, Wu Z, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiol, 2008, 146(4):1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782 |
[22] |
Ruan W, Guo M, Wu P, et al. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice[J]. Plant Mol Biol, 2017, 93(3):327-340.
doi: 10.1007/s11103-016-0564-6 URL |
[23] |
Martín AC, del Pozo JC, Iglesias J, et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. Plant J, 2000, 24(5):559-567.
pmid: 11123795 |
[24] |
Shin H, Shin HS, Dewbre GR, et al. Phosphate transport in Arabidopsis:Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant J, 2004, 39(4):629-642.
doi: 10.1111/tpj.2004.39.issue-4 URL |
[25] | 潘晓阳, 张文睿, 王丹, 等. 植物miRNA在调节低磷胁迫响应中的作用[J]. 植物遗传资源学报, 2020, 21(3):517-524. |
Pan XY, Zhang WR, Wang D, et al. The roles of plant MicroRNA in regulating the response to low phosphorus stress[J]. J Plant Genet Resour, 2020, 21(3):517-524. | |
[26] |
Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiol, 2006, 141(3):988-999.
doi: 10.1104/pp.106.079707 URL |
[27] |
Du Q, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiol, 2018, 177(4):1743-1753.
doi: 10.1104/pp.18.00034 URL |
[28] |
Branscheid A, Sieh D, Pant BD, et al. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis[J]. Mol Plant Microbe Interact, 2010, 23(7):915-926.
doi: 10.1094/MPMI-23-7-0915 URL |
[29] |
Hackenberg M, Shi BJ, Gustafson P, et al. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions[J]. BMC Plant Biol, 2013, 13:214.
doi: 10.1186/1471-2229-13-214 pmid: 24330740 |
[30] |
Etemadi M, Gutjahr C, Couzigou JM, et al. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis[J]. Plant Physiol, 2014, 166(1):281-292.
doi: 10.1104/pp.114.246595 URL |
[31] |
Zhu ZX, Li D, Cong L, et al. Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in Sorghum[J]. Crop J, 2021, 9(2):465-475.
doi: 10.1016/j.cj.2020.07.005 URL |
[32] |
Ezawa T, Saito K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism[J]. New Phytol, 2018, 220(4):1116-1121.
doi: 10.1111/nph.2018.220.issue-4 URL |
[33] |
Burleigh SH, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition[J]. J Exp Bot, 2002, 53(374):1593-1601.
pmid: 12096098 |
[34] |
Müller LM, Harrison MJ. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis[J]. Curr Opin Plant Biol, 2019, 50:132-139.
doi: S1369-5266(18)30106-7 pmid: 31212139 |
[35] |
López-Ráez JA, Charnikhova T, Gómez-Roldán V, et al. Tomato strigolactones are derived from carotenoids and their biosynjournal is promoted by phosphate starvation[J]. New Phytol, 2008, 178(4):863-874.
doi: 10.1111/j.1469-8137.2008.02406.x pmid: 18346111 |
[36] |
Liu G, Pfeifer J, de Brito Francisco R, et al. Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils[J]. New Phytol, 2018, 217(2):784-798.
doi: 10.1111/nph.14847 URL |
[37] |
Bun-Ya M, Nishimura M, Harashima S, et al. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter[J]. Mol Cell Biol, 1991, 11(6):3229-3238.
doi: 10.1128/mcb.11.6.3229-3238.1991 pmid: 2038328 |
[38] | Becquer A, Trap J, Irshad U, et al. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association[J]. Front Plant Sci, 2014, 5:548. |
[39] |
Lindsay PL, Williams BN, MacLean A, et al. A phosphate-dependent requirement for transcription factors IPD3 and IPD3L during arbuscular mycorrhizal symbiosis in Medicago truncatula[J]. Mol Plant Microbe Interact, 2019, 32(10):1277-1290.
doi: 10.1094/MPMI-01-19-0006-R URL |
[40] |
Lu MY, Cheng ZY, Zhang XM, et al. Spatial divergence of PHR-PHT1 modules maintains phosphorus homeostasis in soybean nodules[J]. Plant Physiol, 2020, 184(1):236-250.
doi: 10.1104/pp.19.01209 URL |
[41] |
Tsikou D, Yan Z, Holt DB, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362(6411):233-236.
doi: 10.1126/science.aat6907 URL |
[42] | Oldroyd GE, Leyser O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486) |
[43] |
Ding Y, Wang ZG, Mo SR, et al. Mechanism of low phosphorus inducing the main root lengthening of rice[J]. J Plant Growth Regul, 2021, 40(3):1032-1043.
doi: 10.1007/s00344-020-10161-w URL |
[44] |
Fang Zhu X, Sheng Zhao X, Wu Q, et al. Abscisic acid is involved in root cell wall phosphorus remobilization independent of nitric oxide and ethylene in rice(Oryza sativa)[J]. Ann Bot, 2018, 121(7):1361-1368.
doi: 10.1093/aob/mcy034 URL |
[45] |
Zhang Y, Zhou Y, Chen S, et al. Gibberellins play dual roles in response to phosphate starvation of tomato seedlings, negatively in shoots but positively in roots[J]. J Plant Physiol, 2019, 234/235:145-153.
doi: 10.1016/j.jplph.2019.02.007 URL |
[46] |
Silva-Navas J, Conesa CM, Saez A, et al. Role of Cis-Zeatin in root responses to phosphate starvation[J]. New Phytol, 2019, 224(1):242-257.
doi: 10.1111/nph.16020 pmid: 31230346 |
[47] | Zhu XF, Zhu CQ, Wang C, et al. Nitric oxide Acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice[J]. J Exp Bot, 2017, 68(3):753-760. |
[48] |
Puga MI, Rojas-Triana M, de Lorenzo L, et al. Novel signals in the regulation of Pi starvation responses in plants:facts and promises[J]. Curr Opin Plant Biol, 2017, 39:40-49.
doi: 10.1016/j.pbi.2017.05.007 URL |
[49] |
Wild R, Gerasimaite R, Jung JY, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains[J]. Science, 2016, 352(6288):986-990.
doi: 10.1126/science.aad9858 URL |
[50] |
Ried MK, Wild R, Zhu J, et al. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis[J]. Nat Commun, 2021, 12(1):384.
doi: 10.1038/s41467-020-20681-4 URL |
[51] |
Duan K, Yi KK, Dang L, et al. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. Plant J, 2008, 54(6):965-975.
doi: 10.1111/j.1365-313X.2008.03460.x URL |
[52] |
He Y, Zhang X, Li L, et al. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynjournal[J]. New Phytol, 2021, 230(1):205-217.
doi: 10.1111/nph.v230.1 URL |
[53] |
Lv Q, Zhong Y, Wang Y, et al. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26(4):1586-1597.
doi: 10.1105/tpc.114.123208 URL |
[54] |
Ruan W, Guo M, Wang X, et al. Two RING-finger ubiquitin E3 ligases regulate the degradation of SPX4, an internal phosphate sensor, for phosphate homeostasis and signaling in rice[J]. Mol Plant, 2019, 12(8):1060-1074.
doi: 10.1016/j.molp.2019.04.003 URL |
[55] |
Huang KL, Ma GJ, Zhang ML, et al. The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots[J]. Plant Physiol, 2018, 178(1):413-427.
doi: 10.1104/pp.17.01713 URL |
[56] |
Lin WY, Lin YY, Chiang SF, et al. Evolution of microRNA827 targeting in the plant kingdom[J]. New Phytol, 2018, 217(4):1712-1725.
doi: 10.1111/nph.14938 URL |
[57] |
Park BS, Seo JS, Chua NH. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J]. Plant Cell, 2014, 26(1):454-464.
doi: 10.1105/tpc.113.120311 URL |
[58] |
Yue W, Ying Y, Wang C, et al. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters[J]. Plant J, 2017, 90(6):1040-1051.
doi: 10.1111/tpj.2017.90.issue-6 URL |
[59] |
Liu TY, Huang TK, Yang SY, et al. Identification of plant vacuolar transporters mediating phosphate storage[J]. Nat Commun, 2016, 7:11095.
doi: 10.1038/ncomms11095 URL |
[60] | 刘潮, 褚洪龙, 韩利红, 等. 植物miR399家族分子特征及靶基因功能分析[J]. 华北农学报, 2019, 34(2):1-7. |
Liu C, Chu HL, Han LH, et al. Molecular characterization and target gene prediction of plant miR399 family[J]. Acta Agric Boreali Sin, 2019, 34(2):1-7. | |
[61] |
Zhang J, Gu M, Liang R, et al. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions[J]. New Phytol, 2021, 229(3):1598-1614.
doi: 10.1111/nph.v229.3 URL |
[62] |
Ramaiah M, Jain A, Raghothama KG. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses[J]. Plant Physiol, 2014, 164(3):1484-1498.
doi: 10.1104/pp.113.231183 URL |
[63] |
Chen ZH, Nimmo GA, Jenkins GI, et al. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis[J]. Biochem J, 2007, 405(1):191-198.
doi: 10.1042/BJ20070102 URL |
[64] |
Devaiah BN, Nagarajan VK, Raghothama KG. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6[J]. Plant Physiol, 2007, 145(1):147-159.
doi: 10.1104/pp.107.101691 URL |
[65] |
Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, et al. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J]. Plant Cell, 2002, 14(4):889-902.
pmid: 11971143 |
[66] | Wang Y, Ribot C, Rezzonico E, et al. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis[J]. Plant Physiol, 2004, 135(1):400-411. |
[67] |
Ye Q, Wang H, Su T, et al. The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-pi stress in Arabidopsis[J]. Plant Cell, 2018, 30(5):1062-1076.
doi: 10.1105/tpc.17.00845 URL |
[68] |
Chen YF, Li LQ, Xu Q, et al. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis[J]. Plant Cell, 2009, 21(11):3554-3566.
doi: 10.1105/tpc.108.064980 URL |
[69] |
Su T, Xu Q, Zhang FC, et al. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiol, 2015, 167(4):1579-1591.
doi: 10.1104/pp.114.253799 URL |
[70] |
Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens[J]. Plant Physiol, 2008, 146(2):646-656.
doi: 10.1104/pp.107.108548 URL |
[71] |
Ding GD, Lei GJ, Yamaji N, et al. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis[J]. Mol Plant, 2020, 13(1):99-111.
doi: 10.1016/j.molp.2019.10.002 URL |
[72] |
Yamaji N, Takemoto Y, Miyaji T, et al. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node[J]. Nature, 2017, 541(7635):92-95.
doi: 10.1038/nature20610 URL |
[73] |
Thieme CJ, Rojas-Triana M, Stecyk E, et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues[J]. Nat Plants, 2015, 1(4):15025.
doi: 10.1038/nplants.2015.25 URL |
[74] |
Zhong Y, Pan X, Wang R, et al. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate[J]. Plant Physiol, 2020, 184(1):374-392.
doi: 10.1104/pp.20.00378 URL |
[75] |
Luan M, Zhao F, Han X, et al. Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in Arabidopsis[J]. Plant Physiol, 2019, 179(2):640-655.
doi: 10.1104/pp.18.01424 URL |
[76] | Wang C, Yue W, Ying Y, et al. Rice SPX-major facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice[J]. Plant Physiol, 2015, 169(4):2822-2831. |
[77] |
Xu L, Zhao H, Wan R, et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nat Plants, 2019, 5(1):84-94.
doi: 10.1038/s41477-018-0334-3 URL |
[78] |
Gao W, Lu L, Qiu W, et al. OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice[J]. Plant Cell Physiol, 2017, 58(5):885-892.
doi: 10.1093/pcp/pcx041 URL |
[79] |
Medici A, Szponarski W, Dangeville P, et al. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants[J]. Plant Cell, 2019, 31(5):1171-1184.
doi: 10.1105/tpc.18.00656 |
[80] |
Liu W, Sun Q, Wang K, et al. Nitrogen Limitation Adaptation(NLA)is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1. 7 in Arabidopsis[J]. New Phytol, 2017, 214(2):734-744.
doi: 10.1111/nph.2017.214.issue-2 URL |
[81] |
Zhang ZH, Li Z, Wang W, et al. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus[J]. Mol Plant, 2021, 14(3):517-529.
doi: 10.1016/j.molp.2020.12.005 URL |
[82] |
Hu B, Jiang Z, Wang W, et al. Nitrate-NRT1. 1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nat Plants, 2019, 5(4):401-413.
doi: 10.1038/s41477-019-0384-1 URL |
[83] |
Wang X, Wang HF, Chen Y, et al. The transcription factor NIGT1. 2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize[J]. Plant Cell, 2020, 32(11):3519-3534.
doi: 10.1105/tpc.20.00361 URL |
[84] |
Meng Q, Zhang W, Hu X, et al. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice[J]. Plant J, 2020, 104(5):1269-1284.
doi: 10.1111/tpj.v104.5 URL |
[85] |
Ródenas R, Martínez V, Nieves-Cordones M, et al. High external K+ concentrations impair pi nutrition, induce the phosphate starvation response, and reduce arsenic toxicity in Arabidopsis plants[J]. Int J Mol Sci, 2019, 20(9):2237.
doi: 10.3390/ijms20092237 URL |
[86] |
Meyer G, Bell MJ, Doolette CL, et al. Plant-available phosphorus in highly concentrated fertilizer bands:effects of soil type, phosphorus form, and coapplied potassium[J]. J Agric Food Chem, 2020, 68(29):7571-7580.
doi: 10.1021/acs.jafc.0c01287 URL |
[87] | 徐壮, 王婉瑕, 徐磊, 等. 水稻磷素吸收与转运分子机制研究进展[J]. 植物营养与肥料学报, 2018, 24(5):1378-1385. |
Xu Z, Wang WX, Xu L, et al. Research progress in molecular mechanism of rice phosphorus uptake and translocation[J]. J Plant Nutr Fertil, 2018, 24(5):1378-1385. | |
[88] | 孙传范, 肖凯, 韩胜芳, 等. 植物吸收和转运磷素的分子机理研究进展[J]. 中国农业科技导报, 2011, 13(2):17-24. |
Sun CF, Xiao K, Han SF, et al. Advances in the molecular mechanism of phosphorus uptake and transportation in plants[J]. J Agric Sci Technol, 2011, 13(2):17-24. |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[8] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[9] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[10] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[11] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[12] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[13] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[14] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[15] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||