Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 195-204.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0389
Previous Articles Next Articles
Received:
2021-03-29
Online:
2022-02-26
Published:
2022-03-09
LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution[J]. Biotechnology Bulletin, 2022, 38(2): 195-204.
Fig. 1 Gibberellin biosynthesis pathways in plants 2ox:GA 2-oxidase. 3ox:GA 3-oxidase. 13ox:GA 13-oxidase. 20ox:GA 20-oxidase. GGDP:geranylgeranyl diphosphate. CPS:ent-copalyl diphosphate synthase. KS:ent-kaurene synthase. KO:ent-kaurene oxidase. KAO:ent-kaurenoic acid oxidase. This figure was modified from Yamaguchi[2]
Fig. 2 Sketch of GA-GID1-DELLAsignal transduction Binding with a bioactive GA results in a conformational change in the GID1 receptor,thus which promotes interaction with DELLA proteins. Recruitment of an F-box protein initiates ubiquitination of DELLA mediated by an SCF E3 ubiquitin ligase targeting the DELLA for proteasomal degradation. Deficiency of DELLA eliminates its growth repression and suppresses other DELLA-mediated reactions
Fig.3 Green Revolution genes in gibberellin biosynthesis and signal transduction a:Mutation sites of the sd1 alleles. sd1 mutations affect the activity of GA20ox,which catalyzes the conversion of GA53 to GA20 in the biosynthetic pathway to the biological active product,GA1. The GA20ox gene consists of three exons and two introns. The mutation in each allele is indicated by either an arrow(single-nucleotide substitution)or a line(internal deletion). b:GA action results in the degradation of Rht. The mutant forms of Rht(Rht-B1b and Rht-D1b)are not susceptible to GA-induced degradation. The arrow indicates the position of terminal codons in Rht-B1b and Rht-D1b. The C-terminus(light blue)is highly conserved in all related proteins and contains the repressor activity. The N-terminus(green)contains the GA-signalling domain that includes two highly conserved motifs(dark blue)that are required for GA-induced degradation. This figure was modified from Hedden et al[6]and Sasaki et al[9]
Fig. 4 GRF4 increases the efficiency of nitrogen and carbon metabolism in rice a:In Green Revolution varieties(GRVs),DELLA-like protein SLR1(SLENDER RICE1)inhibits the interaction between OsGIF1 and OsGRF4,which affects the metabolism of nitrogen(N)and carbon(C). b:In improved GRVs,increased expressions of OsGRF4 overcomes the inhibition of SLR1 to OsGIF1-OsGRF4 interactions. In addition,OsGRF4 efficiently promotes nitrogen and carbon use efficiency by self-promotion and thus resulting in higher yields. This figure was modified from Wang et al[60]
Fig. 5 Mechanism of NGR5 regulating rice tillering The rice transcription factor NGR5 facilitates nitrogen-dependent recruitment of PRC2 to repress expression of tillering genes,thus promoting tillering in response to increasing nitrogen supply. NGR5 can be degraded after binding with the gibberellin receptor GID1,while DELLA accumulation inhibits the GID1-NGR5 interaction via competitively binding with GA-GID1,thus stabilizing. This figure was modified from Wu et al[59]
Fig.e 6 A simplified model for the role of GAs in stress response Different abiotic stresses induce the expression of GA2oxs via specific effectors,which results in the subsequent decrease of GAs synthesis,thus promotes DELLA accumulation. Under pathogen attack,JA-mediated JAZ protein degradation releases its repression to DELLAs and MYC transcription factors. MYC2 in turn also enhances the expression of DELLA. Accumulation of DELLAs leads to growth cessation via inhibition of cell elongation and cell division. Other protective mechanisms include the expression promotion of genes encoding detoxification enzymes to inhibit ROS generation,and promotion of JA response via direct repression of JAZ activity. Arrows and T-bars indicate positive or negative regulation,respectively. This figure was modified from Hedden et al[1]
[1] | Hedden P, Thomas SG. Annual plant reviews, volume 49[M]. Chichester, UK:John Wiley & Sons, Ltd, 2016. |
[2] |
Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59(1):225-251.
doi: 10.1146/arplant.2008.59.issue-1 URL |
[3] |
Hedden P, Thomas SG. Gibberellin biosynjournal and its regulation[J]. Biochem J, 2012, 444(1):11-25.
doi: 10.1042/BJ20120245 pmid: 22533671 |
[4] |
Hedden P, Sponsel V. A century of gibberellin research[J]. J Plant Growth Regul, 2015, 34(4):740-760.
doi: 10.1007/s00344-015-9546-1 URL |
[5] |
Hedden P. The current status of research on gibberellin biosynjournal[J]. Plant Cell Physiol, 2020, 61(11):1832-1849.
doi: 10.1093/pcp/pcaa092 pmid: 32652020 |
[6] |
Hedden P, Phillips AL. Gibberellin metabolism:new insights revealed by the genes[J]. Trends Plant Sci, 2000, 5(12):523-530.
pmid: 11120474 |
[7] |
Hedden P. The genes of the Green Revolution[J]. Trends Genet, 2003, 19(1):5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[8] |
Peng J, Richards DE, Hartley NM, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741):256-261.
doi: 10.1038/22307 URL |
[9] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution:a mutant gibberellin-synjournal gene in rice[J]. Nature, 2002, 416(6882):701-702.
doi: 10.1038/416701a URL |
[10] | 张忠根. 二十世纪世界农业发展模式的演变[J]. 农业经济, 2001(1):1-3. |
Zhang ZG. The evolution of the world agricultural development model in the 20th Century[J]. Agric Econ, 2001(1):1-3. | |
[11] |
Silverstone AL, Sun T. Gibberellins and the green revolution[J]. Trends Plant Sci, 2000, 5(1):1-2.
pmid: 10637654 |
[12] |
Khush GS. Green revolution:the way forward[J]. Nat Rev Genet, 2001, 2(10):815-822.
pmid: 11584298 |
[13] |
Salamini F. Hormones and the green revolution[J]. Science, 2003, 302(5642):71-72.
doi: 10.1126/science.1090811 URL |
[14] | 胡瑞法. 农业科技革命:过去和未来[J]. 农业技术经济, 1998(3):2-11, 50. |
Hu RF. Agricultural science and technology revolution:past and future[J]. J Agrotech Econ, 1998(3):2-11, 50. | |
[15] |
Davies WP. An historical perspective from the green revolution to the gene revolution[J]. Nutr Rev, 2003, 61(suppl_6):S124-S134.
doi: 10.1301/nr.2003.jun.S124-S134 URL |
[16] |
Evenson RE. Assessing the impact of the green revolution, 1960 to 2000[J]. Science, 2003, 300(5620):758-762.
pmid: 12730592 |
[17] |
Helliwell CA, Sullivan JA, Mould RM, et al. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic Reticulum steps of the gibberellin biosynjournal pathway[J]. Plant J, 2001, 28(2):201-208.
pmid: 11722763 |
[18] |
Sun TP, Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynjournal[J]. Plant Cell, 1994, 6(10):1509-1518.
pmid: 7994182 |
[19] |
Nelson DR, Schuler MA, Paquette SM, et al. Comparative genomics of rice and Arabidopsis. analysis of 727 cytochrome P450 genes and Pseudogenes from a monocot and a dicot[J]. Plant Physiol, 2004, 135(2):756-772.
pmid: 15208422 |
[20] |
Appleford NEJ, Evans DJ, Lenton JR, et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J]. Planta, 2006, 223(3):568-582.
pmid: 16160850 |
[21] |
Itoh H, Ueguchi-Tanaka M, Sentoku N, et al. Cloning and functional analysis of two gibberellin 3 -hydroxylase genes that are differently expressed during the growth of rice[J]. PNAS, 2001, 98(15):8909-8914.
pmid: 11438692 |
[22] |
Spray CR, Kobayashi M, Suzuki Y, et al. The dwarf-1(dt)mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway[J]. PNAS, 1996, 93(19):10515-10518.
pmid: 11607708 |
[23] |
Pearce S, Huttly AK, Prosser IM, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family[J]. BMC Plant Biol, 2015, 15:130.
doi: 10.1186/s12870-015-0520-7 URL |
[24] |
Plackett ARG, Powers SJ, Fernandez-Garcia N, et al. Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs[J]. Plant Cell, 2012, 24(3):941-960.
doi: 10.1105/tpc.111.095109 URL |
[25] |
Lee DJ, Zeevaart JA. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris[J]. Plant Physiol, 2005, 138(1):243-254.
doi: 10.1104/pp.104.056499 URL |
[26] |
Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation[J]. PNAS, 1999, 96(8):4698-4703.
pmid: 10200325 |
[27] |
Schomburg FM, Bizzell CM, Lee DJ, et al. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants[J]. Plant Cell, 2003, 15(1):151-163.
pmid: 12509528 |
[28] |
Zhu YY, Nomura T, Xu YH, et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice[J]. Plant Cell, 2006, 18(2):442-456.
doi: 10.1105/tpc.105.038455 URL |
[29] |
Varbanova M, Yamaguchi S, Yang Y, et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2[J]. Plant Cell, 2007, 19(1):32-45.
pmid: 17220201 |
[30] |
Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21(9):R338-R345.
doi: 10.1016/j.cub.2011.02.036 URL |
[31] |
van de Velde K, Ruelens P, Geuten K, et al. Exploiting DELLA signaling in cereals[J]. Trends Plant Sci, 2017, 22(10):880-893.
doi: 10.1016/j.tplants.2017.07.010 URL |
[32] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059):693-698.
doi: 10.1038/nature04028 URL |
[33] |
Griffiths J, Murase K, Rieu I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 2006, 18(12):3399-3414.
pmid: 17194763 |
[34] |
Willige BC, Ghosh S, Nill C, et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. Plant Cell, 2007, 19(4):1209-1220.
pmid: 17416730 |
[35] |
Murase K, Hirano Y, Sun TP, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221):459-463.
doi: 10.1038/nature07519 URL |
[36] |
Sun TP. Gibberellin-GID1-DELLA:a pivotal regulatory module for plant growth and development[J]. Plant Physiol, 2010, 154(2):567-570.
doi: 10.1104/pp.110.161554 URL |
[37] |
Harberd NP, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism:how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments[J]. Plant Cell, 2009, 21(5):1328-1339.
doi: 10.1105/tpc.109.066969 URL |
[38] |
Yu ZP, Duan XB, Luo L, et al. How plant hormones mediate salt stress responses[J]. Trends Plant Sci, 2020, 25(11):1117-1130.
doi: 10.1016/j.tplants.2020.06.008 URL |
[39] |
Claeys H, De Bodt S, Inzé D. Gibberellins and DELLAs:central nodes in growth regulatory networks[J]. Trends Plant Sci, 2014, 19(4):231-239.
doi: 10.1016/j.tplants.2013.10.001 URL |
[40] |
Zentella R, Zhang ZL, Park M, et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 2007, 19(10):3037-3057.
doi: 10.1105/tpc.107.054999 pmid: 17933900 |
[41] |
Davière JM, Achard P. A pivotal role of DELLAs in regulating multiple hormone signals[J]. Mol Plant, 2016, 9(1):10-20.
doi: 10.1016/j.molp.2015.09.011 URL |
[42] |
Law CN, Snape JW, Worland AJ. The genetical relationship between height and yield in wheat[J]. Heredity, 1978, 40(1):133-151.
doi: 10.1038/hdy.1978.13 URL |
[43] |
Griffiths S, Simmonds J, Leverington M, et al. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm[J]. Mol Breed, 2012, 29(1):159-171.
doi: 10.1007/s11032-010-9534-x URL |
[44] |
Peng JH, Sun DF, Nevo E. Domestication evolution, genetics and genomics in wheat[J]. Mol Breed, 2011, 28(3):281-301.
doi: 10.1007/s11032-011-9608-4 URL |
[45] |
Wilhelm EP, Boulton MI, Barber TES, et al. Genotype analysis of the wheat semidwarfRht-B1bandRht-D1bancestral lineage[J]. Plant Breed, 2013, 132(6):539-545.
doi: 10.1111/pbr.12099 URL |
[46] |
Guedira M, Brown-Guedira G, van Sanford D, et al. Distribution of rht genes in modern and historic winter wheat cultivars from the eastern and central USA[J]. Crop Sci, 2010, 50(5):1811-1822.
doi: 10.2135/cropsci2009.10.0626 URL |
[47] |
Radley M. Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars[J]. Planta, 1970, 92(4):292-300.
doi: 10.1007/BF00385096 pmid: 24500299 |
[48] |
Gale MD, Marshall GA. Insensitivity to gibberellin in dwarf wheats[J]. Ann Bot, 1973, 37(4):729-735.
doi: 10.1093/oxfordjournals.aob.a084741 URL |
[49] |
Pearce S, Saville R, Vaughan SP, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiol, 2011, 157(4):1820-1831.
doi: 10.1104/pp.111.183657 URL |
[50] |
Li Y, Xiao J, Wu J, et al. A tandem segmental duplication(TSD)in green revolution gene Rht-D1b region underlies plant height variation[J]. New Phytol, 2012, 196(1):282-291.
doi: 10.1111/nph.2012.196.issue-1 URL |
[51] |
Wen W, Deng Q, Jia H, et al. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts[J]. J Exp Bot, 2013, 64(11):3299-3312.
doi: 10.1093/jxb/ert183 pmid: 23918966 |
[52] | Rutger JN. Applications of induced and spontaneous mutation in rice breeding and genetics[J]. Adv Agron, 1983, 36:383-413. |
[53] |
Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1:rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synjournal[J]. DNA Res, 2002, 9(1):11-17.
pmid: 11939564 |
[54] |
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene[J]. PNAS, 2002, 99(13):9043-9048.
pmid: 12077303 |
[55] |
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops[J]. Science, 2019, 366(6466):eaax0025.
doi: 10.1126/science.aax0025 URL |
[56] |
Li S, Tian Y, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720):595-600.
doi: 10.1038/s41586-018-0415-5 URL |
[57] |
Zhang Y, Liu Z, Liu J, et al. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation[J]. Plant Cell Rep, 2017, 36(4):557-569.
doi: 10.1007/s00299-017-2102-7 URL |
[58] |
Liu H, Zhang C, Yang J, et al. Hormone modulation of legume-rhizobial symbiosis[J]. J Integr Plant Biol, 2018, 60(8):632-648.
doi: 10.1111/jipb.v60.8 URL |
[59] |
Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367(6478):eaaz2046-648.
doi: 10.1126/science.aaz2046 URL |
[60] | Wang FM, Matsuoka M. Improved nutrient use gives cereal crops a boost[J]. Nature, 2018, 560(7720):563-564. |
[61] |
Achard P, Cheng H, De Grauwe L, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94.
doi: 10.1126/science.1118642 URL |
[62] |
Magome H, Yamaguchi S, Hanada A, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis[J]. Plant J, 2008, 56(4):613-626.
doi: 10.1111/tpj.2008.56.issue-4 URL |
[63] |
Achard P, Gong F, Cheminant S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. Plant Cell, 2008, 20(8):2117-2129.
doi: 10.1105/tpc.108.058941 URL |
[64] |
Dubois M, Skirycz A, Claeys H, et al. Ethylene Response Factor6 Acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis[J]. Plant Physiol, 2013, 162(1):319-332.
doi: 10.1104/pp.113.216341 URL |
[65] |
Kang HG, Kim J, Kim B, et al. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana[J]. Plant Sci, 2011, 180(4):634-641.
doi: 10.1016/j.plantsci.2011.01.002 URL |
[66] |
Shan C, Mei Z, Duan J, et al. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress[J]. PLoS One, 2014, 9(1):e87110.
doi: 10.1371/journal.pone.0087110 URL |
[67] |
Lo SF, Ho TD, Liu YL, et al. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice[J]. Plant Biotechnol J, 2017, 15(7):850-864.
doi: 10.1111/pbi.12681 URL |
[68] |
Wang D, Pan Y, Zhao X, et al. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice[J]. BMC Genomics, 2011, 12:149.
doi: 10.1186/1471-2164-12-149 pmid: 21406116 |
[69] |
Kuroha T, Nagai K, Gamuyao R, et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding[J]. Science, 2018, 361(6398):181-186.
doi: 10.1126/science.aat1577 URL |
[70] |
Nagai K, Mori Y, Ishikawa S, et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice[J]. Nature, 2020, 584(7819):109-114.
doi: 10.1038/s41586-020-2501-8 URL |
[71] |
Krugman T, Peleg Z, Quansah L, et al. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms[J]. Funct Integr Genom, 2011, 11(4):565-583.
doi: 10.1007/s10142-011-0231-6 URL |
[72] |
Zhou Y, Underhill SJ. Breadfruit(Artocarpus altilis)gibberellin 2-oxidase genes in stem elongation and abiotic stress response[J]. Plant Physiol Biochem, 2016, 98:81-88.
doi: 10.1016/j.plaphy.2015.11.012 URL |
[73] |
Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees[J]. PLoS One, 2014, 9(1):e86217.
doi: 10.1371/journal.pone.0086217 URL |
[74] |
Shan XH, Li YD, Jiang Y, et al. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing[J]. Plant Mol Biol Report, 2013, 31(6):1485-1491.
doi: 10.1007/s11105-013-0622-z URL |
[75] |
Gaion LA, Monteiro CC, Cruz FJR, et al. Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress[J]. J Plant Physiol, 2018, 221:11-21.
doi: 10.1016/j.jplph.2017.12.003 URL |
[76] |
Chen L, Phillips AL, Condon AG, et al. GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat[J]. PLoS One, 2013, 8(4):e62285.
doi: 10.1371/journal.pone.0062285 URL |
[77] |
Rebetzke GJ, Richards RA, Fischer VM, et al. Breeding long coleoptile, reduced height wheats[J]. Euphytica, 1999, 106(2):159-168.
doi: 10.1023/A:1003518920119 URL |
[78] |
Oikawa T, Koshioka M, Kojima K, et al. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice[J]. Plant Mol Biol, 2004, 55(5):687-700.
doi: 10.1007/s11103-004-1692-y URL |
[79] |
Itoh H, Ueguchi-Tanaka M, Sakamoto T, et al. Modification of rice plant height by suppressing the height-controlling gene, D18, in rice[J]. Breed Sci, 2002, 52(3):215-218.
doi: 10.1270/jsbbs.52.215 URL |
[80] |
Hu X, Cui Y, Dong G, et al. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces[J]. Sci Rep, 2019, 9(1):19096.
doi: 10.1038/s41598-019-55757-9 URL |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[3] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[4] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[5] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[6] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[7] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[8] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[9] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[10] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[11] | JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana [J]. Biotechnology Bulletin, 2022, 38(8): 167-178. |
[12] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[13] | YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase [J]. Biotechnology Bulletin, 2022, 38(12): 47-57. |
[14] | XU Yuan-yuan, ZHAO Guo-chun, HAO Ying-ying, WENG Xue-huang, CHEN Zhong, JIA Li-ming. Reference Genes Selection and Validation for RT-qPCR in Sapindus mukorossi [J]. Biotechnology Bulletin, 2022, 38(10): 80-89. |
[15] | LIU Xue-dan, YANG Meng, ZHANG Jing, ZHAO Dong-xu. Effects of Glucose-xylose Co-utilization on the Synthesis of D-1,2,4-Butanetriol by Recombinant Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(9): 171-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||