Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 22-30.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0797
Previous Articles Next Articles
KANG Rui(), LIU Chun-hui, CHEN Si-wen, ZHAO Ren-liang, ZHOU Qiong-qiong()
Received:
2021-06-23
Online:
2022-03-26
Published:
2022-04-06
Contact:
ZHOU Qiong-qiong
E-mail:1350310379@qq.com;zqxy1223@henau.edu.cn
KANG Rui, LIU Chun-hui, CHEN Si-wen, ZHAO Ren-liang, ZHOU Qiong-qiong. Cloning and Expression Analysis of CsCML24 Gene in Camellia sinensis[J]. Biotechnology Bulletin, 2022, 38(3): 22-30.
引物名称 Primer name | 序列 Sequence(5'-3') | 用途 Function |
---|---|---|
CsCML24-F | CATACAACAACAATGTGTCCTACC | 基因克隆 Gene cloning |
CsCML24-R | AAAGGCACCGAACAATACTA | |
CsCML24qRT-F | AGGAGGCGTTTCGGTTTATG | 实时荧光定量 Quantitative real-time PCR |
CsCML24qRT-R | CCTCATCAGTAGCATCAAAACCAG | |
CsPTBqRT-F | ACCAAGCACACTCCACACTATCG | 茶树内参基因 Reference gene |
CsPTBqRT-R | TGCCCCCTTATCATCATCCACAA |
Table 1 Primer sequences
引物名称 Primer name | 序列 Sequence(5'-3') | 用途 Function |
---|---|---|
CsCML24-F | CATACAACAACAATGTGTCCTACC | 基因克隆 Gene cloning |
CsCML24-R | AAAGGCACCGAACAATACTA | |
CsCML24qRT-F | AGGAGGCGTTTCGGTTTATG | 实时荧光定量 Quantitative real-time PCR |
CsCML24qRT-R | CCTCATCAGTAGCATCAAAACCAG | |
CsPTBqRT-F | ACCAAGCACACTCCACACTATCG | 茶树内参基因 Reference gene |
CsPTBqRT-R | TGCCCCCTTATCATCATCCACAA |
蛋白 Protein | 分子量 Molecular weight/Da | 分子式 Formula | 原子总数 No. of atoms | 等电点 pI | 脂肪系数 Aliphatic index | 不稳定系数 Instability index | 总亲水性 Total hydrophilicity |
---|---|---|---|---|---|---|---|
CsCML24 | 38 248.08 | C1386H2294N480O593S96 | 4 849 | 5.23 | 22.08 | 38.05 | -0.596 |
Table 2 Basic physicochemical properties of CsCML24 protein
蛋白 Protein | 分子量 Molecular weight/Da | 分子式 Formula | 原子总数 No. of atoms | 等电点 pI | 脂肪系数 Aliphatic index | 不稳定系数 Instability index | 总亲水性 Total hydrophilicity |
---|---|---|---|---|---|---|---|
CsCML24 | 38 248.08 | C1386H2294N480O593S96 | 4 849 | 5.23 | 22.08 | 38.05 | -0.596 |
Fig. 9 Expression patterns of CsCML24 in various tissues of C. sinensis plant Different letters indicate significant differences at the 0.01 level. The same below
[1] |
Li Y, Wang X, Ban Q, et al. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis[J]. BMC Genomics, 2019, 20(1):624.
doi: 10.1186/s12864-019-5988-3 URL |
[2] |
Ding CQ, Lei L, Yao LN, et al. The involvements of calcium-dependent protein kinases and catechins in tea plant[Camellia sinensis(L.)O. Kuntze]cold responses[J]. Plant Physiol Biochem, 2019, 143:190-202.
doi: 10.1016/j.plaphy.2019.09.005 URL |
[3] |
Reddy AS, Ali GS, Celesnik H, et al. Coping with stresses:roles of calcium- and calcium/calmodulin-regulated gene expression[J]. Plant Cell, 2011, 23(6):2010-2032.
doi: 10.1105/tpc.111.084988 URL |
[4] |
Townley HE, Knight MR. Calmodulin as a potential negative regulator of ArabidopsisCOR gene expression[J]. Plant Physiol, 2002, 128(4):1169-1172.
pmid: 11950965 |
[5] |
Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996, 274(5294):1900-1902.
pmid: 8943201 |
[6] |
Snedden WA, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment[J]. Trends Plant Sci, 1998, 3(8):299-304.
doi: 10.1016/S1360-1385(98)01284-9 URL |
[7] |
Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases[J]. Biochim Biophys Acta, 2009, 1793(6):985-992.
doi: 10.1016/j.bbamcr.2008.10.006 pmid: 19022300 |
[8] |
Midhat U, Ting MKY, Teresinski HJ, et al. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis[J]. Plant Mol Biol, 2018, 96(4/5):375-392.
doi: 10.1007/s11103-018-0703-3 URL |
[9] | Cheval C, Aldon D, Galaud JP, et al. Calcium/calmodulin-mediated regulation of plant immunity[J]. Biochim Biophys Acta, 2013, 1833(7):1766-1771. |
[10] | Zeng H, Xu L, Singh A, et al. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses[J]. Front Plant Sci, 2015, 6:600. |
[11] |
McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytol, 2003, 159(3):585-598.
doi: 10.1046/j.1469-8137.2003.00845.x URL |
[12] |
Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biol, 2007, 7:4.
pmid: 17263873 |
[13] |
Munir S, Khan MR, Song J, et al. Genome-wide identification, characterization and expression analysis of calmodulin-like(CML)proteins in tomato(Solanum lycopersicum)[J]. Plant Physiol Biochem, 2016, 102:167-179.
doi: 10.1016/j.plaphy.2016.02.020 URL |
[14] |
Sun QG, Yu SH, Guo ZF. Calmodulin-like(CML)gene family in Medicago truncatula:genome-wide identification, characterization and expression analysis[J]. Int J Mol Sci, 2020, 21(19):7142.
doi: 10.3390/ijms21197142 URL |
[15] | Delk NA, Johnson KA, Chowdhury NI, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiol, 2005, 139(1):240-253. |
[16] |
Park HC, Park CY, Koo SC, et al. AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana[J]. Plant Cell Rep, 2010, 29(11):1297-1304.
doi: 10.1007/s00299-010-0916-7 URL |
[17] |
Scholz SS, Vadassery J, Heyer M, et al. Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory[J]. Mol Plant, 2014, 7(12):1712-1726.
doi: 10.1093/mp/ssu102 URL |
[18] | Vadassery J, Reichelt M, Hause B, et al. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis[J]. Plant Physiol, 2012, 159(3):1159-1175. |
[19] |
Xu GY, Rocha PS, Wang ML, et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1):47-59.
doi: 10.1007/s00425-011-1386-z URL |
[20] |
Yin XM, Huang LF, Zhang X, et al. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice[J]. J Plant Biol, 2015, 58(1):68-73.
doi: 10.1007/s12374-014-0349-x URL |
[21] |
Yin XM, Huang LF, Wang ML, et al. OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice(Oryza sativa L.)[J]. Mol Breed, 2017, 37(6):1-13.
doi: 10.1007/s11032-016-0586-4 URL |
[22] |
Yang J, Liu S, Ji LX, et al. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice[J]. J Plant Physiol, 2020, 249:153165.
doi: 10.1016/j.jplph.2020.153165 URL |
[23] |
Munir S, Liu H, Xing Y, et al. Overexpression of calmodulin-like(ShCML44)stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses[J]. Sci Rep, 2016, 6:31772.
doi: 10.1038/srep31772 URL |
[24] | 刘伟, 滕腾, 赵懿琛, 等. 杜仲类钙调蛋白基因EuCML5的克隆及表达分析[J]. 园艺学报, 2020, 47(3):590-600. |
Liu W, Teng T, Zhao YC, et al. Cloning and expression analysis of EuCML5 gene in Eucommia ulmoides[J]. Acta Hortic Sin, 2020, 47(3):590-600. | |
[25] |
Li C, Meng D, Zhang J, et al. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple(Malus×domestica)[J]. Plant Physiol Biochem, 2019, 139:600-612.
doi: 10.1016/j.plaphy.2019.04.014 URL |
[26] |
Aleynova OA, Kiselev KV, Ogneva ZV, et al. The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J]. Int J Mol Sci, 2020, 21(21):7939.
doi: 10.3390/ijms21217939 URL |
[27] | 杜昱林. 茶树花粉CsE1α、CsCML21基因的亚细胞定位及启动子克隆与功能验证[D]. 南京:南京农业大学, 2015. |
Du YL. Subcellular localization of CsE1α and CsCML21 and cloning and expression of the promoters from the pollen of Camellia sinensis[D]. Nanjing:Nanjing Agricultural University, 2015. | |
[28] |
Ma Q, Zhou Q, Chen C, et al. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant(Camellia sinensis)[J]. Sci Rep, 2019, 9(1):8211.
doi: 10.1038/s41598-019-44681-7 URL |
[29] | 张满仓, 张超, 赵朋, 等. 马铃薯StCML基因家族鉴定及表达分析[J]. 西北植物学报, 2021, 41(4):565-575. |
Zhang MC, Zhang C, Zhao P, et al. Genome-wide identification and expression analysis of StCML gene family in Solanum tuberosum L[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(4):565-575. | |
[30] | 李迎迎, 闫子飞, 马波, 等. ‘西伯利亚’百合类钙调蛋白基因LiCML的克隆与表达特征分析[J]. 分子植物育种, 2020, 18(22):7334-7341. |
Li YY, Yan ZF, Ma B, et al. Cloning and expression analysis of calmodulin gene LiCML from Lilium[J]. Mol Plant Breed, 2020, 18(22):7334-7341. | |
[31] |
Yang X, Wang SS, Wang M, et al. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration[J]. Plant Mol Biol, 2014, 86(3):225-236.
doi: 10.1007/s11103-014-0220-y pmid: 25139229 |
[32] | 申清湄. 黄花苜蓿MfCML24基因的功能研究[D]. 广州:华南农业大学, 2017. |
Shen QM. Functional analysis of MfCML24 from Medicago falcata[D]. Guangzhou:South China Agricultural University, 2017. | |
[33] |
Zhang H, Zhao Y, Zhu JK. Thriving under stress:how plants balance growth and the stress response[J]. Dev Cell, 2020, 55(5):529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694 |
[34] |
Lamers J, van der Meer T, Testerink C. How plants sense and respond to stressful environments[J]. Plant Physiol, 2020, 182(4):1624-1635.
doi: 10.1104/pp.19.01464 URL |
[35] |
Saijo Y, Loo EP. Plant immunity in signal integration between biotic and abiotic stress responses[J]. New Phytol, 2020, 225(1):87-104.
doi: 10.1111/nph.v225.1 URL |
[1] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[4] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[8] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[9] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[10] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[11] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[12] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[13] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[14] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[15] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||