Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 221-234.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0912
Previous Articles Next Articles
XU Yang(), ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang()
Received:
2021-07-15
Online:
2022-06-26
Published:
2022-07-11
Contact:
DAI Liang-xiang
E-mail:xy52120092661@163.com;liangxiangd@163.com
XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield[J]. Biotechnology Bulletin, 2022, 38(6): 221-234.
土壤类型 Soil type | 纬度 Latitude | 经度 Longitude | 年平均气温 Annual average temperature/℃ | 年平均降水量 Annual mean precipitation/ mm |
---|---|---|---|---|
河南焦作潮褐土 | 34°32'04″-34°45'07″ | 112°16'36″-112°37'20″ | 12.8-14.8 | 528-800 |
山东沂南褐土 | 35°18'26″-35°46'15″ | 118°6'36″-118°43'31″ | 12.8-14.0 | 900 |
河北滦县褐土 | 39°34'52″-39°58'27″ | 118°14'06″-118°49'34″ | 12.5 | 697.2 |
吉林公主岭黑土 | 43°11'08″-44°09'32″ | 124°02'09″-125°18'22″ | 5.6 | 594.8 |
新疆石河子棕钙土 | 43°26'26″-45°20'17″ | 84°58'32″-86°24'04″ | 7.5-8.2 | 180-270 |
湖南邵阳红壤 | 26°40'11″-27°6'23″ | 110°59'02″-110°40'12″ | 16.1-17.1 | 1 300 |
Table 1 Different soils latitude and longitude,annual average temperature,and annual mean precipitation
土壤类型 Soil type | 纬度 Latitude | 经度 Longitude | 年平均气温 Annual average temperature/℃ | 年平均降水量 Annual mean precipitation/ mm |
---|---|---|---|---|
河南焦作潮褐土 | 34°32'04″-34°45'07″ | 112°16'36″-112°37'20″ | 12.8-14.8 | 528-800 |
山东沂南褐土 | 35°18'26″-35°46'15″ | 118°6'36″-118°43'31″ | 12.8-14.0 | 900 |
河北滦县褐土 | 39°34'52″-39°58'27″ | 118°14'06″-118°49'34″ | 12.5 | 697.2 |
吉林公主岭黑土 | 43°11'08″-44°09'32″ | 124°02'09″-125°18'22″ | 5.6 | 594.8 |
新疆石河子棕钙土 | 43°26'26″-45°20'17″ | 84°58'32″-86°24'04″ | 7.5-8.2 | 180-270 |
湖南邵阳红壤 | 26°40'11″-27°6'23″ | 110°59'02″-110°40'12″ | 16.1-17.1 | 1 300 |
土壤类型 Soil type | 土壤有机质 Soil organic matter(ORM)/(g·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen(N)/(mg·kg-1) | 速效磷 Available phosphorous(P)/(mg·kg-1) | 速效钾 Available potassium (K)/(mg·kg-1) | pH |
---|---|---|---|---|---|
河南焦作潮褐土 | 14.46 | 92.00 | 17.90 | 102.20 | 7.2 |
山东沂南褐土 | 13.10 | 92.37 | 27.75 | 95.98 | 6.3 |
河北滦县褐土 | 14.62 | 71.00 | 19.32 | 104.00 | 7.15 |
吉林公主岭黑土 | 26.30 | 133.00 | 15.10 | 116.20 | 6.9 |
新疆石河子棕钙土 | 18.10 | 51.23 | 18.32 | 126.30 | 8.12 |
湖南邵阳红壤 | 12.47 | 67.85 | 6.31 | 72.3 | 4.8 |
Table 2 Analysis of nutrient components and physicochemical factors in different soil types
土壤类型 Soil type | 土壤有机质 Soil organic matter(ORM)/(g·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen(N)/(mg·kg-1) | 速效磷 Available phosphorous(P)/(mg·kg-1) | 速效钾 Available potassium (K)/(mg·kg-1) | pH |
---|---|---|---|---|---|
河南焦作潮褐土 | 14.46 | 92.00 | 17.90 | 102.20 | 7.2 |
山东沂南褐土 | 13.10 | 92.37 | 27.75 | 95.98 | 6.3 |
河北滦县褐土 | 14.62 | 71.00 | 19.32 | 104.00 | 7.15 |
吉林公主岭黑土 | 26.30 | 133.00 | 15.10 | 116.20 | 6.9 |
新疆石河子棕钙土 | 18.10 | 51.23 | 18.32 | 126.30 | 8.12 |
湖南邵阳红壤 | 12.47 | 67.85 | 6.31 | 72.3 | 4.8 |
土壤类型 Soil type | 百果重 Weight of 100 pods/g | 百仁重 Weight of 100 seeds/g | 果产量 Pod yield/g |
---|---|---|---|
河南焦作潮褐土 | 201.31±1.44d | 69.22±0.89e | 285.75±3.33e |
山东沂南褐土 | 216.90±2.69b | 76.09±0.81c | 354.44±3.53c |
河北滦县褐土 | 207.93±2.10c | 74.76±0.39d | 310.66±1.74d |
吉林公主岭黑土 | 233.68±3.44a | 82.48±0.63a | 383.80±1.50a |
新疆石河子棕钙土 | 231.96±0.49a | 81.13±0.81b | 370.75±1.52b |
湖南邵阳红壤 | 192.05±0.53e | 67.31±0.13f | 275.52±3.86f |
Table 3 Effects of soil types on pod yield of peanut
土壤类型 Soil type | 百果重 Weight of 100 pods/g | 百仁重 Weight of 100 seeds/g | 果产量 Pod yield/g |
---|---|---|---|
河南焦作潮褐土 | 201.31±1.44d | 69.22±0.89e | 285.75±3.33e |
山东沂南褐土 | 216.90±2.69b | 76.09±0.81c | 354.44±3.53c |
河北滦县褐土 | 207.93±2.10c | 74.76±0.39d | 310.66±1.74d |
吉林公主岭黑土 | 233.68±3.44a | 82.48±0.63a | 383.80±1.50a |
新疆石河子棕钙土 | 231.96±0.49a | 81.13±0.81b | 370.75±1.52b |
湖南邵阳红壤 | 192.05±0.53e | 67.31±0.13f | 275.52±3.86f |
Fig.2 Bacterial community structure of each sample at the phylum level A:Percentage of bacterial community abundance at the phylum level. B:Kruskal-wallis H test was used to analyze bacterial community differences at the phylum level. * indicate significant differences,* P<0.05,** P<0.01,and*** P<0.001. The same below
Fig.3 Structure of bacterial community at the class,order and family level A:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the class level. B:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the order level. C:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the family level
Fig.4 Bacterial community structure of each sample at the genus level A:Percentage of bacterial community abundance on the rhizosphere of A. hypogaea at the genus level;B:Kruskal-wallis H test was used to analyze bacterial community differences among multiple samples at the genus level
Fig.5 β diversity analysis of bacterial communities on the rhizosphere of A. hypogaea A:Principal co-ordinates analysis(PCoA). B:Sample hierarchical clustering, 1-3:3 repeats. C:ANOSIM analysis
Fig.6 Correlation analysis between soil bacterial commu-nity and soil physical and chemical factors A:Spearman correlation heatmap. B:RDA analysis of soil bacterial community structure and soil physical and chemical factors
[1] |
Enserink M. Nutrition science. The peanut butter debate[J]. Science, 2008, 322(5898):36-38.
doi: 10.1126/science.322.5898.36 URL |
[2] |
Toomer OT. Nutritional chemistry of the peanut(Arachis hypogaea)[J]. Crit Rev Food Sci Nutr, 2018, 58(17):3042-3053.
doi: 10.1080/10408398.2017.1339015 URL |
[3] |
Krishna G, Singh BK, Kim EK, et al. Progress in genetic engineering of peanut(Arachis hypogaea L.)——a review[J]. Plant Biotechnol J, 2015, 13(2):147-162.
doi: 10.1111/pbi.12339 pmid: 25626474 |
[4] | 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2):161-166. |
Liao BS. A review on progress and prospects of peanut industry in China[J]. Chin J Oil Crop Sci, 2020, 42(2):161-166. | |
[5] | 马军, 徐田, 叶迎, 等. 土壤类型与施氮水平耦合对水稻产量及氮素利用率的影响[J]. 生态学杂志, 2021, 40(6):1677-1686. |
Ma J, Xu T, Ye Y, et al. Effects of coupling of soil type and nitrogen application level on rice yield and nitrogen use efficiency[J]. Chin J Ecol, 2021, 40(6):1677-1686. | |
[6] |
贾立华, 赵长星, 王月福, 等. 不同质地土壤对花生根系生长、分布和产量的影响[J]. 植物生态学报, 2013, 37(7):684-690.
doi: 10.3724/SP.J.1258.2013.00071 |
Jia LH, Zhao CX, Wang YF, et al. Effects of different soil textures on the growth and distribution of root system and yield in peanut[J]. Chin J Plant Ecol, 2013, 37(7):684-690.
doi: 10.3724/SP.J.1258.2013.00071 URL |
|
[7] | 朱振林, 李新华, 杨丽萍, 等. 不同土壤类型对花生品质的影响[J]. 山东农业科学, 2015, 47(12):67-70. |
Zhu ZL, Li XH, Yang LP, et al. Effects of different soil types on peanut quality[J]. Shandong Agric Sci, 2015, 47(12):67-70. | |
[8] | 杨丽萍, 郭洪海, 李新华, 等. 中国花生蛋白质含量空间分布预测初探[J]. 中国农业科技导报, 2010, 12(5):92-97. |
Yang LP, Guo HH, Li XH, et al. Preliminary studies on spatial distribution prediction of peanut protein content in China[J]. J Agric Sci Technol, 2010, 12(5):92-97. | |
[9] | 杨丽萍, 朱振林, 李新华, 等. 基于GIS技术探讨我国花生品质空间分异规律[J]. 安徽农业科学, 2012, 40(35):17399-17401. |
Yang LP, Zhu ZL, Li XH, et al. Discussion on spatial distribution differentiation law of peanut quality in China based on GIS technology[J]. J Anhui Agric Sci, 2012, 40(35):17399-17401. | |
[10] | 张吉民, 苗华荣, 吴兰荣, 等. 不同类型土壤和肥料对花生品质性状的影响[J]. 花生学报, 2003, 32(S1):372-374. |
Zhang JM, Miao HR, Wu LR, et al. Effects of different types of soil and fertilizer on quality traits of peanut[J]. J Peanut Sci, 2003, 32(S1):372-374. | |
[11] |
Qiao Q, Wang F, Zhang J, et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage[J]. Sci Rep, 2017, 7(1):3940.
doi: 10.1038/s41598-017-04213-7 URL |
[12] |
Pii Y, Borruso L, Brusetti L, et al. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome[J]. Plant Physiol Biochem, 2016, 99:39-48.
doi: 10.1016/j.plaphy.2015.12.002 URL |
[13] |
Helliwell JR, Sturrock CJ, Miller AJ, et al. The role of plant species and soil condition in the structural development of the rhizosphere[J]. Plant Cell Environ, 2019, 42(6):1974-1986.
doi: 10.1111/pce.13529 |
[14] |
Geng LL, Shao GX, Raymond B, et al. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut(Arachis hypogaea L.)rhizosphere microbiome[J]. Microbiol Res, 2018, 211:13-20.
doi: 10.1016/j.micres.2018.02.008 URL |
[15] |
Dai LX, Zhang GC, Yu ZP, et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. Int J Mol Sci, 2019, 20(9):2265.
doi: 10.3390/ijms20092265 URL |
[16] | 徐扬, 张冠初, 丁红, 等. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响[J]. 应用生态学报, 2020, 31(4):1305-1313. |
Xu Y, Zhang GC, Ding H, et al. Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield[J]. Chin J Appl Ecol, 2020, 31(4):1305-1313. | |
[17] |
Chen F, Tan M, Yang YJ, et al. The diversity changes of soil microbial communities stimulated by climate, soil type and vegetation type analyzed via a functional gene array[J]. World J Microbiol Biotechnol, 2015, 31(11):1755-1763.
doi: 10.1007/s11274-015-1926-y URL |
[18] |
Girvan MS, Bullimore J, Pretty JN, et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Appl Environ Microbiol, 2003, 69(3):1800-1809.
doi: 10.1128/AEM.69.3.1800-1809.2003 URL |
[19] |
İnceoğlu Ö, Falcão Salles J, van Elsas JD. Soil and cultivar type shape the bacterial community in the potato rhizosphere[J]. Microb Ecol, 2012, 63(2):460-470.
doi: 10.1007/s00248-011-9930-8 pmid: 21898103 |
[20] | 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征[J]. 土壤学报, 2019, 56(4):975-985. |
Yao XD, Li XG, Ding CF, et al. Microzone distribution characteristics of soil microbial community with peanut cropping system, monocropping or rotation[J]. Acta Pedol Sin, 2019, 56(4):975-985. | |
[21] | 陈德乐, 王兴祥, 张亚楠, 等. 持续施用生物有机肥对花生产量和根际细菌群落的影响[J]. 土壤, 2021, 53(3):537-544. |
Chen DL, Wang XX, Zhang YN, et al. Effect of persistent application of bioorganic fertilizer on peanut yield and rhizosphere bacterial community[J]. Soils, 2021, 53(3):537-544. | |
[22] |
Ci D, Tang Z, Ding H, et al. The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut(Arachis hypogaea L.)in saline alkali soil[J]. J Microbiol, 2021, 59(1):51-63.
doi: 10.1007/s12275-021-0317-3 URL |
[23] | 徐扬, 张冠初, 丁红, 等. 花生根际土壤细菌群落对干旱和盐胁迫的响应[J]. 中国油料作物学报, 2020, 42(6):985-993. |
Xu Y, Zhang GC, Ding H, et al. Response of rhizosphere bacterial community structure associated with peanut(Arachis hypogaea L.)to high salinity and drought stress[J]. Chin J Oil Crop Sci, 2020, 42(6):985-993. | |
[24] |
戴良香, 徐扬, 张冠初, 等. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8):1581-1592.
doi: 10.3724/SP.J.1006.2021.04160 |
Dai LX, Xu Y, Zhang GC, et al. Response of rhizosphere bacterial community diversity to salt stress in peanut[J]. Acta Agron Sin, 2021, 47(8):1581-1592. | |
[25] |
Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[26] | Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet J, 2011, 17(1):10. |
[27] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[28] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
doi: 10.1093/bioinformatics/btr381 URL |
[29] |
Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1462):1935-1943.
doi: 10.1098/rstb.2005.1725 URL |
[30] |
Bates ST, Clemente JC, Flores GE, et al. Global biogeography of highly diverse protistan communities in soil[J]. Isme J, 2013, 7(3):652-659.
doi: 10.1038/ismej.2012.147 URL |
[31] |
Cai Y, Hua B, Gao L, et al. Effects of adding trace elements on rice straw anaerobic mono-digestion:Focus on changes in microbial communities using high-throughput sequencing[J]. Bioresour Technol, 2017, 239:454-463.
doi: 10.1016/j.biortech.2017.04.071 URL |
[32] |
Kashtan N, Roggensack SE, Berta-Thompson JW, et al. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus[J]. ISME J, 2017, 11(9):1997-2011.
doi: 10.1038/ismej.2017.64 pmid: 28524867 |
[33] |
Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Appl Environ Microbiol, 2012, 78(23):8264-8271.
doi: 10.1128/AEM.01821-12 URL |
[34] |
Tap J, Derrien M, Törnblom H, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome[J]. Gastroenterology, 2017, 152(1):111-123. e8.
doi: 10.1053/j.gastro.2016.09.049 URL |
[35] | Mar JS, LaMere BJ, Lin DL, et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients[J]. mBio, 2016, 7(4):e01072-e01016. |
[36] |
Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier[J]. Isme J, 2016, 10(7):1625-1641.
doi: 10.1038/ismej.2015.238 URL |
[37] |
张淼, 陈裕凤, 陈龙, 等. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J]. 生物技术通报, 2020, 36(9):167-179.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0667 |
Zhang M, Chen YF, Chen L, et al. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum(Roxb. )DC in different regions[J]. Biotechnol Bull, 2020, 36(9):167-179. | |
[38] | 王文晓, 李小伟, 黄文广, 等. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究[J]. 生态学报, 2020, 40(23):8660-8671. |
Wang WX, Li XW, Huang WG, et al. Correlations between the composition and diversity of bacterial communities and ecological factors in the rhizosphere of Ammopiptanthus mongolicus[J]. Acta Ecol Sin, 2020, 40(23):8660-8671. | |
[39] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
Jiang J, Song MH. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chin J Plant Ecol, 2010, 34(8):979-988. | |
[40] |
周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007, 15(3):306-311.
doi: 10.1360/biodiv.070069 |
Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil mi-crobial diversity[J]. Biodivers Sci, 2007, 15(3):306-311.
doi: 10.1360/biodiv.070069 URL |
|
[41] | Ding XX, Liu GL, Fu SL, et al. Tree species composition and nutrient availability affect soil microbial diversity and composition across forest types in subtropical China[J]. CATENA, 2021, 201:105224. |
[42] | 韩世忠, 高人, 马红亮, 等. 建瓯万木林自然保护区两种森林类型土壤真菌多样性[J]. 生态学杂志, 2015, 34(9):2613-2620. |
Han SZ, Gao R, Ma HL, et al. Soil fungal diversities of two types of forests in Jian’ou Wanmulin Nature Reserve[J]. Chin J Ecol, 2015, 34(9):2613-2620. | |
[43] | 胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响Ⅱ——基于DGGE方法对微生物种群的变化分析[J]. 中国农业科学, 2007, 40(10):2267-2273. |
Hu YS, Wu K, Li CX, et al. Effect of continuous cropping of cucumber on soil microbial populationⅡ──Variation analysis based on DGGE approach[J]. Sci Agric Sin, 2007, 40(10):2267-2273. | |
[44] | 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9):1801-1820. |
Xian WD, Zhang XZ, Li WJ. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiol Sin, 2020, 60(9):1801-1820. | |
[45] | 张静, 李会琳, 王岚, 等. 土地利用方式改变以及长期施肥处理对酸性土壤微生物群落结构的影响[J]. 四川环境, 2017, 36(6):36-44. |
Zhang J, Li HL, Wang L, et al. The impact of land use change and long-term fertilization on the microbial communities in acidic soils[J]. Sichuan Environ, 2017, 36(6):36-44. | |
[46] |
Epelde L, Lanzén A, Blanco F, et al. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine[J]. FEMS Microbiol Ecol, 2015, 91(1):1-11.
doi: 10.1093/femsec/fiu007 pmid: 25764532 |
[47] |
Faulwetter JL, Burr MD, Parker AE, et al. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms[J]. Microb Ecol, 2013, 65(1):111-127.
doi: 10.1007/s00248-012-0114-y pmid: 22961363 |
[48] | 马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3):54-67. |
Ma X, Luo ZZ, Zhang YQ, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sin, 2021, 30(3):54-67. | |
[49] |
Vigneron A, Cruaud P, Alsop E, et al. Beyond the tip of the iceberg;a new view of the diversity of sulfite-and sulfate-reducing microorganisms[J]. Isme J, 2018, 12(8):2096-2099.
doi: 10.1038/s41396-018-0155-4 pmid: 29805176 |
[50] |
Zhu P, Wang YP, Shi TT, et al. Intertidal zonation affects diversity and functional potentials of bacteria in surface sediments:a case study of the Golden Bay mangrove, China[J]. Appl Soil Ecol, 2018, 130:159-168.
doi: 10.1016/j.apsoil.2018.06.003 URL |
[51] |
Xie CH, Yokota A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa[J]. Int J Syst Evol Microbiol, 2006, 56(Pt 4):889-893.
doi: 10.1099/ijs.0.64056-0 URL |
[1] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[2] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[3] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[4] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[5] | LI Qi, YANG Xiao-lei, LI Xiao-lin, SHEN You-lei, LI Jian-hong, YAO Tuo. Identification of Phytate Phosphorus-solubilizing PGPB in Avena sativa Rhizosphere from Alpine Grassland and Functional Characteristics of Dominant Genus Pseudomonas sp. [J]. Biotechnology Bulletin, 2023, 39(3): 243-253. |
[6] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[7] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[8] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[9] | JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana [J]. Biotechnology Bulletin, 2022, 38(8): 167-178. |
[10] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[11] | SHEN Jia-jia, HOU Xiao-gai, WANG Er-qiang, WANG Fei, GUO Li-li. Organic Phosphate-solubilizing Bacteria Screening in the Rhizosphere of Paeonia ostii and Study on Their Phosphate-solubilizing Capabilities [J]. Biotechnology Bulletin, 2022, 38(6): 157-165. |
[12] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[13] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
[14] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[15] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||