Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 84-95.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0497
Previous Articles Next Articles
LI Liu1,2,3(), MU Ying-chun2,3, LIU Lu2,3, ZHANG Hong-yu2, XU Jin-hua2,3, YANG Zhen2,3, QIAO Lu2,3, SONG Jin-long2,3()
Received:
2022-04-22
Online:
2022-09-26
Published:
2022-10-11
Contact:
SONG Jin-long
E-mail:1410150575@qq.com;songjl@cafs.ac.cn
LI Liu, MU Ying-chun, LIU Lu, ZHANG Hong-yu, XU Jin-hua, YANG Zhen, QIAO Lu, SONG Jin-long. Research Progress on Contamination Control of Fluoroquinolone Antibiotics and Drug Resistance Genes[J]. Biotechnology Bulletin, 2022, 38(9): 84-95.
氟喹诺酮类抗生素 Fluoroquinolone antibiotics | 菌株 Strains | 初始浓度 Initial concentration/(mg·L-1) | 降解率 Degradation rate /% | 参考文献Reference |
---|---|---|---|---|
环丙沙星Ciprofloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.15 | 85(28 d) | [ | |
Ochrobactrum sp. JOB | 10 | 34(14 d) | [ | |
Thermus thermophiles C419 | 5 | 57(5 d) | [ | |
Bradyrhizobium sp. GLC_01 | 0.05 | 70(8 d) | [ | |
Bacillus sp. KM504129 | 5 | 74(14 d) | [ | |
Bacillus subtilius | 5 | 70(14 d) | [ | |
Enterobacter sp. KM504128 | 5 | 94(14 d) | [ | |
Lactobacillus gesseri KM4055978 | 5 | 100(14 d) | [ | |
Micrococcus luteus | 5 | 56(14 d) | [ | |
Tepidiphilus sp. M4 | 30 | 49(10 d) | [ | |
Lactobacillus reuteri WQ-Y1 | 4 | 65(1 d) | [ | |
Paraclostridium sp. | 5 | 74(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 67.7(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Panus tigrinus 577.79 | 10 | 60(14 d) | [ | |
Pleurotus ostreatus | 1.50 | 95.07(14 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 98.5(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 64.5(8 d) | [ | |
Trichoderma asperellum | 0.20 | 81(13 d) | [ | |
Trichoderma harzianum | 0.20 | 21(13 d) | [ | |
诺氟沙星Norfloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.11 | 85(28 d) | [ | |
Mycobacterium sp. | 100 | 75-98.4(7 d) | [ | |
Staphylococcus capraeNOR-36 | 5 | 92.6(10 d) | [ | |
Thermus thermophiles C419 | 5 | 63(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 51(10 d) | [ | |
Paraclostridium sp. | 5 | 60(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 68.9(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 85(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 96.4(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 73.2(8 d) | [ | |
Fusarium verticillioides MH045733 | 50 | 37.54(7 d) | [ | |
Fusarium solani MH045734 | 50 | 33.59(7 d) | [ | |
Aspergillus sydowii MH045735 | 50 | 15.67(7 d) | [ | |
Penicillium janthinellum MH045736 | 50 | 46.31(7 d) | [ | |
氧氟沙星Ofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 70(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 47(10 d) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Pseudomonas sp. F2 | 5 | 100 | [ | |
Labrys portucalensis F11 | 0.45 | 34.6(28 d) | [ | |
Rhodococcus sp. FP1 | 0.45 | 39.3(28 d) | [ | |
真菌Fungi | ||||
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Trichoderma asperellum | 0.20 | 44(13 d) | [ | |
Trichoderma harzianum | 0.20 | 32(13 d) | [ | |
恩诺沙星Enrofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 74(72 h) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Enterococcus faecalis BSFL-1 | 100 | 63.2(96 h) | [ | |
Proteus mirabilis BSFL-2 | 100 | 57.2(96 h) | [ | |
Enterococcus faecalis BSFL-3 | 100 | 65.9(96 h) | [ | |
真菌Fungi | ||||
Agrocybe praecox | —— | —— | [ | |
Coprinus macrocephalus | —— | —— | [ | |
Cyathus stercoreus | —— | —— | [ |
Table 1 Reported strains that degrade fluoroquinolone antibiotics
氟喹诺酮类抗生素 Fluoroquinolone antibiotics | 菌株 Strains | 初始浓度 Initial concentration/(mg·L-1) | 降解率 Degradation rate /% | 参考文献Reference |
---|---|---|---|---|
环丙沙星Ciprofloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.15 | 85(28 d) | [ | |
Ochrobactrum sp. JOB | 10 | 34(14 d) | [ | |
Thermus thermophiles C419 | 5 | 57(5 d) | [ | |
Bradyrhizobium sp. GLC_01 | 0.05 | 70(8 d) | [ | |
Bacillus sp. KM504129 | 5 | 74(14 d) | [ | |
Bacillus subtilius | 5 | 70(14 d) | [ | |
Enterobacter sp. KM504128 | 5 | 94(14 d) | [ | |
Lactobacillus gesseri KM4055978 | 5 | 100(14 d) | [ | |
Micrococcus luteus | 5 | 56(14 d) | [ | |
Tepidiphilus sp. M4 | 30 | 49(10 d) | [ | |
Lactobacillus reuteri WQ-Y1 | 4 | 65(1 d) | [ | |
Paraclostridium sp. | 5 | 74(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 67.7(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Panus tigrinus 577.79 | 10 | 60(14 d) | [ | |
Pleurotus ostreatus | 1.50 | 95.07(14 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 98.5(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 64.5(8 d) | [ | |
Trichoderma asperellum | 0.20 | 81(13 d) | [ | |
Trichoderma harzianum | 0.20 | 21(13 d) | [ | |
诺氟沙星Norfloxacin | 细菌Bacteria | |||
Labrys portucalensis F11 | 1.11 | 85(28 d) | [ | |
Mycobacterium sp. | 100 | 75-98.4(7 d) | [ | |
Staphylococcus capraeNOR-36 | 5 | 92.6(10 d) | [ | |
Thermus thermophiles C419 | 5 | 63(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 51(10 d) | [ | |
Paraclostridium sp. | 5 | 60(3 d) | [ | |
真菌Fungi | ||||
Pestalotiopsis guepini P-8 | 100 | 68.9(18 d) | [ | |
Trametes versicolor ATCC42530 | 2 | 90(7 d) | [ | |
Trametes versicolor 617/93 | 10 | 85(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Pycnoporus sanguineus CGMCC 5.815 | 10 | 96.4(2 d) | [ | |
Phanerochaete chrysosporium CGMCC 5.776 | 10 | 73.2(8 d) | [ | |
Fusarium verticillioides MH045733 | 50 | 37.54(7 d) | [ | |
Fusarium solani MH045734 | 50 | 33.59(7 d) | [ | |
Aspergillus sydowii MH045735 | 50 | 15.67(7 d) | [ | |
Penicillium janthinellum MH045736 | 50 | 46.31(7 d) | [ | |
氧氟沙星Ofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 70(72 h) | [ | |
Tepidiphilus sp. M4 | 30 | 47(10 d) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Pseudomonas sp. F2 | 5 | 100 | [ | |
Labrys portucalensis F11 | 0.45 | 34.6(28 d) | [ | |
Rhodococcus sp. FP1 | 0.45 | 39.3(28 d) | [ | |
真菌Fungi | ||||
Trametes versicolor 617/93 | 10 | 100(14 d) | [ | |
Irpex lacteus 617/93 | 10 | 100(10 d) | [ | |
Trichoderma asperellum | 0.20 | 44(13 d) | [ | |
Trichoderma harzianum | 0.20 | 32(13 d) | [ | |
恩诺沙星Enrofloxacin | 细菌Bacteria | |||
Thermus thermophiles C419 | 5 | 74(72 h) | [ | |
Paraclostridium sp. | 5 | 68(3 d) | [ | |
Enterococcus faecalis BSFL-1 | 100 | 63.2(96 h) | [ | |
Proteus mirabilis BSFL-2 | 100 | 57.2(96 h) | [ | |
Enterococcus faecalis BSFL-3 | 100 | 65.9(96 h) | [ | |
真菌Fungi | ||||
Agrocybe praecox | —— | —— | [ | |
Coprinus macrocephalus | —— | —— | [ | |
Cyathus stercoreus | —— | —— | [ |
酶类型 Enzyme type | 来源 Microorganism | 可降解的氟喹诺酮类抗生素 Biodegradable fluoroquinolone antibiotics | 参考文献Reference |
---|---|---|---|
漆酶Laccase | Trametes versicolor | CIP,NOR | [ |
Pycnoporus sanguineus | CIP,NOR | [ | |
SilA | Streptomyces ipomoeae | CIP,NOR | [ |
Pleurotus eryngii | LEV | [ | |
Pleurotus florida | LEV | [ | |
Pleurotus sajor caju | LEV | [ | |
Trametes polyzona KU-RNW027 | CIP | [ | |
细胞色素P450酶 Cytochrome P450 enzyme | Lactobacillus reuteri WQ-Y1 | CIP,NOR,OFL,ENR | [ |
Paraclostridium sp. | CIP | [ | |
Trametes versicolor | CIP,NOR | [ | |
Pycnoporus chrysosporium | CIP,NOR | [ | |
硫酸盐还原菌(SRB)污泥 Sulfate reducing bacteria(SRB)sludge | CIP | [ | |
氨基糖苷乙酰化转移酶Aminoglycoside acetyltransferase | Enterobacteriaceae | CIP | [ |
Escherichia coli | -- | [ | |
锰过氧化物酶 Manganese peroxidase | Irpex lacteus | CIP,NIR,OFL | [ |
Trametes polyzona KU-RNW027 | CIP | [ | |
氯过氧化物酶Chlorperoxidase | Cadariomyces fumago | NOR | [ |
脱氢酶Dehydrogenase | Paraclostridium sp. | CIP | [ |
Table 2 Enzymes degrading fluoroquinolone antibiotics
酶类型 Enzyme type | 来源 Microorganism | 可降解的氟喹诺酮类抗生素 Biodegradable fluoroquinolone antibiotics | 参考文献Reference |
---|---|---|---|
漆酶Laccase | Trametes versicolor | CIP,NOR | [ |
Pycnoporus sanguineus | CIP,NOR | [ | |
SilA | Streptomyces ipomoeae | CIP,NOR | [ |
Pleurotus eryngii | LEV | [ | |
Pleurotus florida | LEV | [ | |
Pleurotus sajor caju | LEV | [ | |
Trametes polyzona KU-RNW027 | CIP | [ | |
细胞色素P450酶 Cytochrome P450 enzyme | Lactobacillus reuteri WQ-Y1 | CIP,NOR,OFL,ENR | [ |
Paraclostridium sp. | CIP | [ | |
Trametes versicolor | CIP,NOR | [ | |
Pycnoporus chrysosporium | CIP,NOR | [ | |
硫酸盐还原菌(SRB)污泥 Sulfate reducing bacteria(SRB)sludge | CIP | [ | |
氨基糖苷乙酰化转移酶Aminoglycoside acetyltransferase | Enterobacteriaceae | CIP | [ |
Escherichia coli | -- | [ | |
锰过氧化物酶 Manganese peroxidase | Irpex lacteus | CIP,NIR,OFL | [ |
Trametes polyzona KU-RNW027 | CIP | [ | |
氯过氧化物酶Chlorperoxidase | Cadariomyces fumago | NOR | [ |
脱氢酶Dehydrogenase | Paraclostridium sp. | CIP | [ |
[1] | 张灵巧. 喹诺酮类药物的作用机制及不良反应分析[J]. 健康之路, 2017, 16(10):114-115. |
Zhang LQ. Analysis of the mechanism of action and adverse reactions of quinolones[J]. Heal Way, 2017, 16(10):114-115. | |
[2] | 陈默. 氟喹诺酮类抗生素在鲤鱼体内的富集与代谢[D]. 大连: 大连理工大学, 2019. |
Chen M. Bioconcentration and metabolism of fluoroquinolones(FQs)in common carp(Cyprinus carpio)[D]. Dalian: Dalian University of Technology, 2019. | |
[3] | 贾晨, 高峰, 吕芳, 等. 底泥中氟喹诺酮类抗生素残留检测方法的研究进展[J]. 质量安全与检验检测, 2021, 31(5):56-58. |
Jia C, Gao F, Lyu F, et al. Research advances on detection of fluoroquinolones residues in sediment[J]. Qual Saf Insp Test, 2021, 31(5):56-58. | |
[4] | 张君, 封丽, 田隽, 等. 氟喹诺酮类在环境中的分布及去除研究进展[J]. 环境科学与技术, 2019, 42(S1):77-84. |
Zhang J, Feng L, Tian J, et al. Distribution characteristics in the environment and research progress treatment technology of fluoroquinolone antibiotics[J]. Environ Sci Technol, 2019, 42(S1):77-84. | |
[5] | 沙乃庆, 李艳红. 氟喹诺酮类抗生素水污染现状及去除技术研究进展[J]. 工业水处理, 2021, 41(5):22-28. |
Sha NQ, Li YH. Current situation of water pollution and research progress treatment technology of fluoroquinolone antibiotics[J]. Ind Water Treat, 2021, 41(5):22-28. | |
[6] | 剧泽佳, 赵鑫宇, 陈慧, 等. 石家庄市水环境中喹诺酮类抗生素的空间分布特征与环境风险评估[J]. 环境科学学报, 2021, 41(12):4919-4931. |
Ju ZJ, Zhao XY, Chen H, et al. The characteristics of spatial distribution and environmental risk assessment for Quinolones antibiotics in the aquatic environment of Shijiazhuang City[J]. Acta Sci Circumstantiae, 2021, 41(12):4919-4931. | |
[7] | 蓝贤瑾, 刘益仁, 吕真真, 等. 氟喹诺酮类抗生素在我国农田土壤中残留及其风险研究进展[J]. 江西农业学报, 2019, 31(9):108-115. |
Lan XJ, Liu YR, Lv ZZ, et al. Research advance in residues and ecological risks of fluoroquinolone antibiotics in agricultural soil in China[J]. Acta Agric Jiangxi, 2019, 31(9):108-115. | |
[8] | 徐志华, 孟勇, 杨洪生, 等. 江苏典型养殖区斑点叉尾鮰中多种药物的残留与膳食暴露评估[J]. 中国渔业质量与标准, 2021, 11(5):1-8. |
Xu ZH, Meng Y, Yang HS, et al. Residues and dietary exposure assessment of multiple drugs in Ictalurus punctatus in typical aquaculture areas of Jiangsu[J]. Chin Fish Qual Stand, 2021, 11(5):1-8. | |
[9] |
Amorim CL, Moreira IS, Maia AS, et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Appl Microbiol Biotechnol, 2014, 98(7):3181-3190.
doi: 10.1007/s00253-013-5333-8 URL |
[10] | 喻娇. 环丙沙星(CIP)降解菌群驯化及降解特性初步研究[D]. 广州: 暨南大学, 2017. |
Yu J. Domestication of CIP-degrading bacterial consortium and preliminary study on their degradation characteristics[D]. Guangzhou: Jinan University, 2017. | |
[11] |
Pan LJ, Li J, Li CX, et al. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. J Hazard Mater, 2018, 343:59-67.
doi: 10.1016/j.jhazmat.2017.09.009 URL |
[12] |
Nguyen LN, Nghiem LD, Oh S. Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge[J]. Chemosphere, 2018, 211:600-607.
doi: S0045-6535(18)31472-3 pmid: 30096573 |
[13] | Liyanage GY, Manage PM. Removal of Ciprofloxacin(CIP)by bacteria isolated from hospital effluent water and identification of degradation pathways[J]. Int J Med Pharm Drug Res, 2018, 2(3):37-47. |
[14] | 疏文慧. 氧氟沙星厌氧降解菌的富集筛选和降解特性研究[D]. 无锡: 江南大学, 2021. |
Shu WH. Enrichment and isolation of anaerobic ofloxacin degradation bacteria and their degradation characteristics[D]. Wuxi: Jiangnan University, 2021. | |
[15] |
Qu CX, Wu Z, Pan DD, et al. Characterization of Lactobacillus reuteri WQ-Y1 with the ciprofloxacin degradation ability[J]. Biotechnol Lett, 2021, 43(4):855-864.
doi: 10.1007/s10529-020-03068-9 URL |
[16] |
Fang HT, Oberoi AS, He ZQ, et al. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge:Optimization and mechanism[J]. Water Res, 2021, 191:116808.
doi: 10.1016/j.watres.2021.116808 URL |
[17] |
Parshikov IA, Heinze TM, Moody JD, et al. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin[J]. Appl Microbiol Biotechnol, 2001, 56(3/4):474-477.
doi: 10.1007/s002530100672 URL |
[18] |
Prieto A, Möder M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresour Technol, 2011, 102(23):10987-10995.
doi: 10.1016/j.biortech.2011.08.055 URL |
[19] |
Čvančarová M, Moeder M, Filipová A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi-Metabolites, enzymes and residual antibacterial activity[J]. Chemosphere, 2015, 136:311-320.
doi: 10.1016/j.chemosphere.2014.12.012 pmid: 25592459 |
[20] |
Singh SK, Khajuria R, Kaur L. Biodegradation of ciprofloxacin by white rot fungus Pleurotus ostreatus[J]. 3 Biotech, 2017, 7(1):69.
doi: 10.1007/s13205-017-0684-y URL |
[21] |
Gao N, Liu CX, Xu QM, et al. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus[J]. Chemosphere, 2018, 195:146-155.
doi: 10.1016/j.chemosphere.2017.12.062 URL |
[22] |
Manasfi R, Chiron S, Montemurro N, et al. Biodegradation of fluoroquinolone antibiotics and the climbazole fungicide by Trichoderma species[J]. Environ Sci Pollut Res Int, 2020, 27(18):23331-23341.
doi: 10.1007/s11356-020-08442-8 URL |
[23] |
Adjei MD, Heinze TM, Deck J, et al. Transformation of the antibacterial agent norfloxacin by environmental mycobacteria[J]. Appl Environ Microbiol, 2006, 72(9):5790-5793.
doi: 10.1128/AEM.03032-05 URL |
[24] | 付泊明, 陈立伟, 蔡天明, 等. 诺氟沙星降解菌NOR-36的分离筛选及降解特性研究[J]. 环境科学学报, 2017, 37(2):576-584. |
Fu BM, Chen LW, Cai TM, et al. Isolation and characterization of norfloxacin-degrading bacterium strain NOR-36[J]. Acta Sci Circumstantiae, 2017, 37(2):576-584. | |
[25] | 王强锋, 朱彭玲, 夏中梅, 等. 三种农用抗生素降解真菌的筛选及其降解性能[J]. 农业资源与环境学报, 2018, 35(6):533-539. |
Wang QF, Zhu PL, Xia ZM, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungi[J]. J Agric Resour Environ, 2018, 35(6):533-539. | |
[26] |
Li KJ, Xu AL, Wu DH, et al. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides[J]. Bioresour Technol, 2021, 328:124826.
doi: 10.1016/j.biortech.2021.124826 URL |
[27] |
Maia AS, Tiritan ME, Castro PML. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1[J]. Ecotoxicol Environ Saf, 2018, 155:144-151.
doi: 10.1016/j.ecoenv.2018.02.067 URL |
[28] | 梅瀚杰, 陈喜鸿, 胡文锋, 等. 一株降解恩诺沙星菌株的筛选鉴定及其降解条件的优化[J]. 食品工业科技, 2021, 42(5):105-112. |
Mei HJ, Chen XH, Hu WF, et al. Screening and identification of enrofloxacin degrading strain and optimization of its degradation conditions[J]. Sci Technol Food Ind, 2021, 42(5):105-112. | |
[29] |
Wetzstein HG, Schneider J, Karl W. Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites[J]. Appl Microbiol Biotechnol, 2006, 71(1):90-100.
pmid: 16328445 |
[30] |
Maia AS, Ribeiro AR, Amorim CL, et al. Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2014, 1333:87-98.
doi: 10.1016/j.chroma.2014.01.069 pmid: 24548434 |
[31] |
Feng NX, Yu J, Xiang L, et al. Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition[J]. Sci Total Environ, 2019, 665:41-51.
doi: 10.1016/j.scitotenv.2019.01.322 URL |
[32] |
Blánquez A, Guillén F, Rodríguez J, et al. The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae[J]. World J Microbiol Biotechnol, 2016, 32(3):52.
doi: 10.1007/s11274-016-2032-5 URL |
[33] |
Mathur P, Sanyal D, Dey P. The optimization of enzymatic oxidation of levofloxacin, a fluoroquinolone antibiotic for wastetwater treatment[J]. Biodegradation, 2021, 32(4):467-485.
doi: 10.1007/s10532-021-09946-x URL |
[34] |
Lueangjaroenkit P, Teerapatsakul C, Sakka K, et al. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system[J]. Mycobiology, 2019, 47(2):217-229.
doi: 10.1080/12298093.2019.1589900 pmid: 31448142 |
[35] |
Jia YY, Khanal SK, Shu HY, et al. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria(SRB)sludge system:mechanism and pathways[J]. Water Res, 2018, 136:64-74.
doi: 10.1016/j.watres.2018.02.057 URL |
[36] |
Park CH, Robicsek A, Jacoby GA, et al. Prevalence in the United States of aac(6 ‘)- Ib - cr encoding a ciprofloxacin-modifying enzyme[J]. Antimicrob Agents Chemother, 2006, 50(11):3953-3955.
pmid: 16954321 |
[37] |
Ingram PR, Rogers BA, Sidjabat HE, et al. Co-selection may explain high rates of ciprofloxacin non-susceptible Escherichia coli from retail poultry reared without prior fluoroquinolone exposure[J]. J Med Microbiol, 2013, 62(Pt 11):1743-1746.
doi: 10.1099/jmm.0.062729-0 URL |
[38] |
Zhao RN, Li XH, Hu MC, et al. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge[J]. Bioprocess Biosyst Eng, 2017, 40(8):1261-1270.
doi: 10.1007/s00449-017-1786-y URL |
[39] |
Asgher M, Bhatti HN, Ashraf M, et al. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system[J]. Biodegradation, 2008, 19(6):771-783.
doi: 10.1007/s10532-008-9185-3 pmid: 18373237 |
[40] |
Reis AC, Kolvenbach BA, Nunes OC, et al. Biodegradation of antibiotics:the new resistance determinants - part II[J]. N Biotechnol, 2020, 54:13-27.
doi: 10.1016/j.nbt.2019.08.003 URL |
[41] |
Rusch M, Spielmeyer A, Zorn H, et al. Biotransformation of ciprofloxacin by Xylaria longipes:structure elucidation and residual antibacterial activity of metabolites[J]. Appl Microbiol Biotechnol, 2018, 102(19):8573-8584.
doi: 10.1007/s00253-018-9231-y URL |
[42] | 夏湘勤, 黄彩红, 席北斗, 等. 畜禽粪便中氟喹诺酮类抗生素的生物转化与机制研究进展[J]. 农业环境科学学报, 2019, 38(2):257-267. |
Xia XQ, Huang CH, Xi BD, et al. Review on biotransformation and mechanism of fluoroquinolone antibiotics from livestock manure[J]. J Agro Environ Sci, 2019, 38(2):257-267. | |
[43] |
Mathur P, Sanyal D, Callahan DL, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health[J]. Environ Pollut, 2021, 291:118233.
doi: 10.1016/j.envpol.2021.118233 URL |
[44] |
Liao XB, Li BX, Zou RS, et al. Biodegradation of antibiotic ciprofloxacin:pathways, influential factors, and bacterial community structure[J]. Environ Sci Pollut Res Int, 2016, 23(8):7911-7918.
doi: 10.1007/s11356-016-6054-1 URL |
[45] |
Kim DW, Heinze TM, Kim BS, et al. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant[J]. Appl Environ Microbiol, 2011, 77(17):6100-6108.
doi: 10.1128/AEM.00545-11 URL |
[46] |
Zhao CY, Ru SG, Cui PF, et al. Multiple metabolic pathways of enrofloxacin by Lolium perenne L. :Ecotoxicity, biodegradation, and key driven genes[J]. Water Res, 2021, 202:117413.
doi: 10.1016/j.watres.2021.117413 URL |
[47] | Wang L, Qiang ZM, Li YG, et al. An insight into the removal of fluoroquinolones in activated sludge process:Sorption and biodegradation characteristics[J]. J Environ Sci(China), 2017, 56:263-271. |
[48] | 陈国鑫. 水产养殖水中抗生素的残留特性及其去除技术研究[D]. 广州: 广东工业大学, 2015. |
Chen GX. Study on residual characterization of antibiotics in aquaculture wastewater and its removal technology[D]. Guangzhou: Guangdong University of Technology, 2015. | |
[49] | 王亚军, 陈甜婧. 氟喹诺酮类抗生素在水环境中的去除研究综评[J]. 环境监测管理与技术, 2021, 33(5):1-5. |
Wang YJ, Chen TJ. Comprehensive review on the removal of fluoroquinolone antibiotics in water environment[J]. Adm Tech Environ Monit, 2021, 33(5):1-5. | |
[50] | 张全胜. 影响活性污泥法处理效果的因素[J]. 四川建材, 2021, 47(7):34-35. |
Zhang QS. Factors affecting the effect of activated sludge treatment[J]. Sichuan Build Mater, 2021, 47(7):34-35. | |
[51] | 公言飞, 刘鹏, 郅立鹏. 膜生物反应器(MBR)研究现状及发展趋势[J]. 中国资源综合利用, 2021, 39(3):90-93. |
Gong YF, Liu P, Zhi LP. Research status and development trend of membrane bioreactor(MBR)[J]. China Resour Compr Util, 2021, 39(3):90-93. | |
[52] |
Dorival-García N, Zafra-Gómez A, Navalón A, et al. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors[J]. Sci Total Environ, 2013, 442:317-328.
doi: 10.1016/j.scitotenv.2012.10.026 URL |
[53] |
Xu ZC, Song XY, Li Y, et al. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment[J]. Sci Total Environ, 2019, 684:23-30.
doi: 10.1016/j.scitotenv.2019.05.241 URL |
[54] | 覃宁波. 膜生物反应器污水处理技术的研究进展[J]. 大众科技, 2021, 23(6):13-15. |
Qin NB. Research progress of membrane bioreactor wastewater treatment technology[J]. Pop Sci Technol, 2021, 23(6):13-15. | |
[55] | 杨鑫, 赵国淼, 朱威宇, 等. 酸碱指示剂在工业微生物高通量筛选中的应用进展[J]. 发酵科技通讯, 2021, 50(4):223-227. |
Yang X, Zhao GM, Zhu WY, et al. Application progress of acid-base indicators in high-throughput screening of industrial microorganisms[J]. Bull Ferment Sci Technol, 2021, 50(4):223-227. | |
[56] | 黄佳城, 张瑷珲, 付友思, 等. 功能性菌群构建的研究进展[J]. 合成生物学, 2022, 3(1):155-167. |
Huang JC, Zhang AH, Fu YS, et al. Research progress in construction of functional microbial communities[J]. Synth Biol J, 2022, 3(1):155-167. | |
[57] | 黄慧. 四氢呋喃降解菌群的富集与重建及降解菌ZM07与非降解菌互作机制研究[D]. 杭州: 浙江大学, 2021. |
Huang H. Enrichment and reconstruction of tetrahydrofuran-degrading microbial culture and interactions between degrading bacterium ZM07 and non-degrading bacteria[D]. Hangzhou: Zhejiang University, 2021. | |
[58] | 徐昭勇, 胡海洋, 许平, 等. 人工合成微生物组的构建与应用[J]. 合成生物学, 2021, 2(2):181-193. |
Xu ZY, Hu HY, Xu P, et al. Development and application of synthetic microbiome[J]. Synth Biol J, 2021, 2(2):181-193. | |
[59] | 王肖. 复合MBR强化去除污水中残留抗生素的效果研究[D]. 南京: 东南大学, 2015. |
Wang X. Research on the enhanced removal of antibiotic residues in wastewater by new composite MBR[D]. Nanjing: Southeast University, 2015. | |
[60] |
Zhao X, Tian FW, Wang G, et al. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy[J]. FEMS Microbiol Ecol, 2012, 82(3):703-712.
doi: 10.1111/j.1574-6941.2012.01440.x pmid: 22757630 |
[61] |
Barnhill AE, Weeks KE, Xiong N, et al. Identification of multiresistant Salmonella isolates capable of subsisting on antibiotics[J]. Appl Environ Microbiol, 2010, 76(8):2678-2680.
doi: 10.1128/AEM.02516-09 URL |
[1] | WEI Xiao-bo, HOU Ying, CHENG Hao-jie, QIN Cui-li, NIU Ming-fu, XU Jian-qiang. Isolation,Identification of Phenol-degrading Pseudoxanthomonas sp. BF-6 and Its Degradation Characteristics and Pathway [J]. Biotechnology Bulletin, 2021, 37(10): 72-80. |
[2] | LIU Meng-yuan, LENG Yan, ZHAI Li-xiang, HE LI-fang, LI Shi-weng. Current Status and Progress on Prokaryotic Transcriptome Study [J]. Biotechnology Bulletin, 2019, 35(6): 164-171. |
[3] | Gong Weili, Wang Lushan, Zhang Huaiqiang. Diverse Synthetases and Fungi Degradation Enzymes for the Polysaccharides of Plant Cell Walls [J]. Biotechnology Bulletin, 2015, 31(4): 149-165. |
[4] | Yan Hejing, Shi Yue, Liu Chang. Comparative Study of Chitosan Degradation Enzymes from Aspergillus sp. in Solid-State and Liquid-State Fermentation [J]. Biotechnology Bulletin, 2015, 31(11): 207-213. |
[5] | Zhang Hairong, Tang Jingchun, Sun Kejing, Zhang Qingmin. Isolation and Identification of Saline-alkaline Tolerant Hydrocarbon-degrading Strains and Study on Their Saline-alkaline Tolerant Characteristics [J]. Biotechnology Bulletin, 2015, 31(1): 151-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||