Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 96-105.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0089
Previous Articles Next Articles
LIU Xiao-li(), TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang()
Received:
2022-01-19
Online:
2022-09-26
Published:
2022-10-11
Contact:
LIU Chen-guang
E-mail:723140523@qq.com;liucg@ouc.edu.cn
LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori[J]. Biotechnology Bulletin, 2022, 38(9): 96-105.
化合物类型 Compound type | 活性成分 Ingredients | 作用机制 Mechanism | 结构式 Chemical structure | 参考文献 Reference |
---|---|---|---|---|
有机硫Organic sulfur | 大蒜素Allicin | 裂解细胞壁Lyze cell war | [ | |
生物碱Alkaloid | 小檗碱Berberine | 抑制生物膜形成、抗炎Inhibit biofilm formation & anti-inflammatory | [ | |
原小檗碱家族Protoberberine group | 抑制脲酶活性、促进溃疡修复Inhibit urease activity & promote ulcer recovery | [ | ||
有机酸Organic acid | 鞣花酸Ellagic acid | 抑制能量代谢、促进黏膜修复Inhibit energy metabolism and promote mucosa recovery | [ | |
萜类Terpenoid | 广藿香醇 Patchouli alcohol | 抑制脲酶活性、抑制细菌外排泵基因表达Inhibit urease activity & inhibit efflux pump gene express | [ | |
广防风内酯Ovatodiolide | 抗炎、抑制细菌蛋白表达Anti-inflammation and inhibit protein express | [ | ||
类黄酮Flavonoid | 二氢丹参酮Dihydrotanshinone | 抑制能量代谢、清除成熟生物膜 Inhibit energy metabolism & eradicate mature biofilm | [ | |
橙皮苷Hesperetin | 下调细菌基因表达(脲酶、鞭毛及毒力因子)Down-regulate gene express(urease,flagella and virulence factors) | [ | ||
杨梅素Myricetin | 抑制细菌转型及生物膜形成 Inhibit cell transformation & biofilm formation | [ |
Table 1 Anti-H. pylori products from nature plants and their antibacterial mechanism
化合物类型 Compound type | 活性成分 Ingredients | 作用机制 Mechanism | 结构式 Chemical structure | 参考文献 Reference |
---|---|---|---|---|
有机硫Organic sulfur | 大蒜素Allicin | 裂解细胞壁Lyze cell war | [ | |
生物碱Alkaloid | 小檗碱Berberine | 抑制生物膜形成、抗炎Inhibit biofilm formation & anti-inflammatory | [ | |
原小檗碱家族Protoberberine group | 抑制脲酶活性、促进溃疡修复Inhibit urease activity & promote ulcer recovery | [ | ||
有机酸Organic acid | 鞣花酸Ellagic acid | 抑制能量代谢、促进黏膜修复Inhibit energy metabolism and promote mucosa recovery | [ | |
萜类Terpenoid | 广藿香醇 Patchouli alcohol | 抑制脲酶活性、抑制细菌外排泵基因表达Inhibit urease activity & inhibit efflux pump gene express | [ | |
广防风内酯Ovatodiolide | 抗炎、抑制细菌蛋白表达Anti-inflammation and inhibit protein express | [ | ||
类黄酮Flavonoid | 二氢丹参酮Dihydrotanshinone | 抑制能量代谢、清除成熟生物膜 Inhibit energy metabolism & eradicate mature biofilm | [ | |
橙皮苷Hesperetin | 下调细菌基因表达(脲酶、鞭毛及毒力因子)Down-regulate gene express(urease,flagella and virulence factors) | [ | ||
杨梅素Myricetin | 抑制细菌转型及生物膜形成 Inhibit cell transformation & biofilm formation | [ |
底物类型 Compound type | 活性物质 Active content | 合成模式 Synthesis method | 参考文献 Reference |
---|---|---|---|
类黄酮 Flavonoid | 紫草醌 Shikonin | 半合成 Semi-synthesis | [ |
绿原酸 Chlorogenic acid | 半合成 Semi-synthesis | [ | |
萜类 Terpenoid | 香芹酮 Carvone | 半合成 Semi-synthesis | [ |
尿素类似物 Urea analogue | 硫脲 Thiourea | 全合成 Total-synthesis | [ |
咔唑-三嗪 Carbazole-triazine | 咔唑 Carbazole | 全合成 Total-synthesis | [ |
Table 2 Novel discovered urease inhibitors
底物类型 Compound type | 活性物质 Active content | 合成模式 Synthesis method | 参考文献 Reference |
---|---|---|---|
类黄酮 Flavonoid | 紫草醌 Shikonin | 半合成 Semi-synthesis | [ |
绿原酸 Chlorogenic acid | 半合成 Semi-synthesis | [ | |
萜类 Terpenoid | 香芹酮 Carvone | 半合成 Semi-synthesis | [ |
尿素类似物 Urea analogue | 硫脲 Thiourea | 全合成 Total-synthesis | [ |
咔唑-三嗪 Carbazole-triazine | 咔唑 Carbazole | 全合成 Total-synthesis | [ |
益生菌菌株 Probiotic strain | 抗H. pylori机制 Anti-H. pylori mechanism | 分子机制 Molecular mechanism | 参考文献Reference |
---|---|---|---|
嗜热链球菌Streptococcus thermophilus CRL1190 | 降低炎症反应、抑制黏附Reduce inflammation & inhibit bacteria adhesion | 分泌胞外多糖1190 Secrete extra-polysaccharides 1190 | [ |
植物乳杆菌Lactiplantibacillus plantarum ATCC 14917T& R1012 | 抑制毒力因子分泌及脲酶活性Inhibit toxic factor secretion & urease activity | 分泌有机酸和拮抗因子Secrete organic acids & antagonistic factor | [ |
鼠李糖乳杆菌Lactobacillus rhamnosus GMNL-74 & 嗜酸乳杆菌Lactobacillus acidophilus GMNL-185 | 抑制黏附及毒力因子分泌Inhibit adhesion & toxic factor secretion | 降低血液中胆固醇水平Reduce cholesterol level in serum | [ |
干酪乳杆菌Lactobacillus casei DGDG & 嗜酸乳杆菌Lactobacillus acidophilus LA14 | 抑制脲酶活性、调节肠道菌群Inhibit urease activity & regulate intestinal flora | 分泌乳酸等有机酸Secrete lactic acid and other organic acids | [ |
鼠李糖乳杆菌Lactobacillus rhamnosus JB3 | 抑制毒力因子分泌及鞭毛运动Inhibit toxic factor secretion & flagellar movement | 降低宿主受体表达、分泌拮抗因子Reduce host receptor expression & secrete antagonistic factor | [ |
Table 3 Inhibitory activity and mechanisms of probiotics against H. pylori
益生菌菌株 Probiotic strain | 抗H. pylori机制 Anti-H. pylori mechanism | 分子机制 Molecular mechanism | 参考文献Reference |
---|---|---|---|
嗜热链球菌Streptococcus thermophilus CRL1190 | 降低炎症反应、抑制黏附Reduce inflammation & inhibit bacteria adhesion | 分泌胞外多糖1190 Secrete extra-polysaccharides 1190 | [ |
植物乳杆菌Lactiplantibacillus plantarum ATCC 14917T& R1012 | 抑制毒力因子分泌及脲酶活性Inhibit toxic factor secretion & urease activity | 分泌有机酸和拮抗因子Secrete organic acids & antagonistic factor | [ |
鼠李糖乳杆菌Lactobacillus rhamnosus GMNL-74 & 嗜酸乳杆菌Lactobacillus acidophilus GMNL-185 | 抑制黏附及毒力因子分泌Inhibit adhesion & toxic factor secretion | 降低血液中胆固醇水平Reduce cholesterol level in serum | [ |
干酪乳杆菌Lactobacillus casei DGDG & 嗜酸乳杆菌Lactobacillus acidophilus LA14 | 抑制脲酶活性、调节肠道菌群Inhibit urease activity & regulate intestinal flora | 分泌乳酸等有机酸Secrete lactic acid and other organic acids | [ |
鼠李糖乳杆菌Lactobacillus rhamnosus JB3 | 抑制毒力因子分泌及鞭毛运动Inhibit toxic factor secretion & flagellar movement | 降低宿主受体表达、分泌拮抗因子Reduce host receptor expression & secrete antagonistic factor | [ |
[1] |
Hooi JKY, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection:systematic review and meta-analysis[J]. Gastroenterology, 2017, 153(2):420-429.
doi: 10.1053/j.gastro.2017.04.022 URL |
[2] |
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection:an overview of bacterial virulence factors and pathogenesis[J]. Biomed J, 2016, 39(1):14-23.
doi: 10.1016/j.bj.2015.06.002 URL |
[3] |
Robinson K, Atherton JC. The spectrum of Helicobacter-mediated diseases[J]. Annu Rev Pathol, 2021, 16:123-144.
doi: 10.1146/annurev-pathol-032520-024949 pmid: 33197219 |
[4] |
Sugano K, Tack J, Kuipers EJ, et al. Kyoto global consensus report on Helicobacter pylori gastritis[J]. Gut, 2015, 64(9):1353-1367.
doi: 10.1136/gutjnl-2015-309252 URL |
[5] | Malfertheiner P, Mégraud F, O'Morain C, et al. Current concepts in the management of Helicobacter pylori infection-The Maastricht 2-2000 Consensus Report[J]. Aliment Pharmacol Ther, 2002, 16(2):167-180. |
[6] |
Liu WZ, Xie Y, Lu H, et al. Fifth Chinese National Consensus Report on the management of Helicobacter pylori infection[J]. Helicobacter, 2018, 23(2):e12475.
doi: 10.1111/hel.12475 URL |
[7] |
Preston A, Mandrell RE, Gibson BW, et al. The lipooligosaccharides of pathogenic gram-negative bacteria[J]. Crit Rev Microbiol, 1996, 22(3):139-180.
pmid: 8894399 |
[8] |
Hu Y, Zhang M, Lu B, et al. Helicobacter pylori and antibiotic resistance, a continuing and intractable problem[J]. Helicobacter, 2016, 21(5):349-363.
doi: 10.1111/hel.12299 URL |
[9] | 陈小楠, 申元娜, 李彭宇, 等. 细菌生物膜的特征及抗细菌生物膜策略[J]. 药学学报, 2018, 53(12):2040-2049. |
Chen XN, Shen YN, Li PY, et al. Bacterial biofilms:characteristics and combat strategies[J]. Acta Pharm Sin, 2018, 53(12):2040-2049. | |
[10] |
Gupta P, Sarkar S, Das B, et al. Biofilm, pathogenesis and prevention-a journey to break the wall:a review[J]. Arch Microbiol, 2016, 198(1):1-15.
doi: 10.1007/s00203-015-1148-6 URL |
[11] |
Liu Y, Busscher HJ, Zhao BR, et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms[J]. ACS Nano, 2016, 10(4):4779-4789.
doi: 10.1021/acsnano.6b01370 pmid: 26998731 |
[12] |
Salehi B, Sharopov F, Martorell M, et al. Phytochemicals in Helicobacter pylori infections:what are we doing now?[J]. Int J Mol Sci, 2018, 19(8):2361.
doi: 10.3390/ijms19082361 URL |
[13] | Siddiqui MA, Sadiq O, Iqbal U, et al. Incidence of Clostridium difficile in patient treated with Helicobacter pylori eradication therapy[J]. Gastroenterology, 2017, 152(5):S951. |
[14] | Baker DA. Plants against Helicobacter pylori to combat resistance:an ethnopharmacological review[J]. Biotechnol Rep(Amst), 2020, 26:e00470. |
[15] |
Cañizares P, Gracia I, Gómez LA, et al. Allyl-thiosulfinates, the bacteriostatic compounds of garlic against Helicobacter pylori[J]. Biotechnol Prog, 2004, 20(1):397-401.
doi: 10.1021/bp034143b URL |
[16] |
Liu WH, Hsu CC, Yin MC. In vitro anti-Helicobacter pylori activity of diallyl sulphides and protocatechuic acid[J]. Phytother Res, 2008, 22(1):53-57.
doi: 10.1002/ptr.2259 URL |
[17] |
Wu XX, Li X, Dang ZQ, et al. Berberine demonstrates anti-inflammatory properties in Helicobacter pylori-infected mice with chronic gastritis by attenuating the Th17 response triggered by the B cell-activating factor[J]. J Cell Biochem, 2018, 119(7):5373-5381.
doi: 10.1002/jcb.26681 URL |
[18] |
Shen YN, Zou YQ, Chen XN, et al. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori[J]. J Control Release, 2020, 328:575-586.
doi: 10.1016/j.jconrel.2020.09.025 URL |
[19] |
Zhou JT, Li CL, Tan LH, et al. Inhibition of Helicobacter pylori and its associated urease by palmatine:investigation on the potential mechanism[J]. PLoS One, 2017, 12(1):e0168944.
doi: 10.1371/journal.pone.0168944 URL |
[20] |
Wang L, Wang X, Zhu XM, et al. Gastroprotective effect of alkaloids from cortex phellodendri on gastric ulcers in rats through neurohumoral regulation[J]. Planta Med, 2017, 83(3/4):277-284.
doi: 10.1055/s-0042-114044 URL |
[21] | Luo PP, Huang YQ, Hang XD, et al. Dihydrotanshinone I is effective against drug-resistant Helicobacter pylori in vitro and in vivo[J]. Antimicrob Agents Chemother, 2021, 65(3):e01921-e01920. |
[22] |
Kim HW, Woo HJ, Yang JY, et al. Hesperetin inhibits expression of virulence factors and growth of Helicobacter pylori[J]. Int J Mol Sci, 2021, 22(18):10035.
doi: 10.3390/ijms221810035 URL |
[23] |
Krzyżek P, Migdał P, Paluch E, et al. Myricetin as an antivirulence compound interfering with a morphological transformation into coccoid forms and potentiating activity of antibiotics against Helicobacter pylori[J]. Int J Mol Sci, 2021, 22(5):2695.
doi: 10.3390/ijms22052695 URL |
[24] |
Si XB, Zhang XM, Wang S, et al. Allicin as add-on therapy for Helicobacter pylori infection:a systematic review and meta-analysis[J]. World J Gastroenterol, 2019, 25(39):6025-6040.
doi: 10.3748/wjg.v25.i39.6025 URL |
[25] |
Hu Q, Peng Z, Li LL, et al. The efficacy of berberine-containing quadruple therapy on Helicobacter pylori eradication in China:a systematic review and meta-analysis of randomized clinical trials[J]. Front Pharmacol, 2020, 10:1694.
doi: 10.3389/fphar.2019.01694 URL |
[26] |
Tan LH, Li CL, Chen HB, et al. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean:Susceptibility and mechanism[J]. Eur J Pharm Sci, 2017, 110:77-86.
doi: 10.1016/j.ejps.2017.02.004 URL |
[27] |
De R, Sarkar A, Ghosh P, et al. Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice[J]. J Antimicrob Chemother, 2018, 73(6):1595-1603.
doi: 10.1093/jac/dky079 URL |
[28] | Lian DW, Xu YF, Ren WK, et al. Mechanism of anti-Helicobacter pylori urease activity of patchouli alcohol[J]. Zhongguo Zhong Yao Za Zhi, 2017, 42(3):562-566. |
[29] |
Zhong YZ, Tang LY, Deng QH, et al. Unraveling the novel effect of patchouli alcohol against the antibiotic resistance of Helicobacter pylori[J]. Front Microbiol, 2021, 12:674560.
doi: 10.3389/fmicb.2021.674560 URL |
[30] |
Lien HM, Wu HY, Hung CL, et al. Antibacterial activity of ovatodiolide isolated from Anisomeles indica against Helicobacter pylori[J]. Sci Rep, 2019, 9(1):4205.
doi: 10.1038/s41598-019-40735-y URL |
[31] |
Shu Q, Lou HH, Wei TY, et al. Contributions of glycolipid biosurfactants and glycolipid-modified materials to antimicrobial strategy:a review[J]. Pharmaceutics, 2021, 13(2):227.
doi: 10.3390/pharmaceutics13020227 URL |
[32] |
Shen YN, Li PY, Chen XN, et al. Activity of sodium lauryl sulfate, rhamnolipids, and N-acetylcysteine against biofilms of five common pathogens[J]. Microb Drug Resist, 2020, 26(3):290-299.
doi: 10.1089/mdr.2018.0385 URL |
[33] |
Chen XN, Li PY, Shen YN, et al. Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro:a comparison with conventional triple therapy[J]. Microb Pathog, 2019, 131:112-119.
doi: 10.1016/j.micpath.2019.04.001 URL |
[34] |
Li PY, Chen XN, Shen YN, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm[J]. J Control Release, 2019, 300:52-63.
doi: 10.1016/j.jconrel.2019.02.039 URL |
[35] |
Wille JJ, Kydonieus A. Palmitoleic acid isomer(C16:1delta6)in human skin sebum is effective against gram-positive bacteria[J]. Skin Pharmacol Appl Skin Physiol, 2003, 16(3):176-187.
pmid: 12677098 |
[36] |
Khulusi S, Ahmed HA, Patel P, et al. The effects of unsaturated fatty acids on Helicobacter pylori in vitro[J]. J Med Microbiol, 1995, 42(4):276-282.
pmid: 7707336 |
[37] |
Petschow BW, Batema RP, Ford LL. Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids[J]. Antimicrob Agents Chemother, 1996, 40(2):302-306.
pmid: 8834870 |
[38] |
Bergsson G, Steingrímsson O, Thormar H. Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori[J]. Int J Antimicrob Agents, 2002, 20(4):258-262.
doi: 10.1016/S0924-8579(02)00205-4 URL |
[39] |
Correia M, Michel V, Matos AA, et al. Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization[J]. PLoS One, 2012, 7(4):e35072.
doi: 10.1371/journal.pone.0035072 URL |
[40] |
Obonyo M, Zhang L, Thamphiwatana S, et al. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori[J]. Mol Pharm, 2012, 9(9):2677-2685.
doi: 10.1021/mp300243w URL |
[41] |
Thamphiwatana S, Gao WW, Obonyo M, et al. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation[J]. PNAS, 2014, 111(49):17600-17605.
doi: 10.1073/pnas.1418230111 pmid: 25422427 |
[42] |
Cong Y, Geng JY, Wang HY, et al. Ureido-modified carboxymethyl chitosan-graft-stearic acid polymeric nano-micelles as a targeted delivering carrier of clarithromycin for Helicobacter pylori:preparation and in vitro evaluation[J]. Int J Biol Macromol, 2019, 129:686-692.
doi: 10.1016/j.ijbiomac.2019.01.227 URL |
[43] | Huang YQ, Hang XD, Jiang XQ, et al. In vitro and in vivo activities of zinc linolenate, a selective antibacterial agent against Helicobacter pylori[J]. Antimicrob Agents Chemother, 2019, 63(6):e00004-e00019. |
[44] |
Zhang L, Wu WKK, Gallo RL, et al. Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection[J]. J Immunol, 2016, 196(4):1799-1809.
doi: 10.4049/jimmunol.1500021 pmid: 26800870 |
[45] |
Pero R, Coretti L, Nigro E, et al. β-defensins in the fight against Helicobacter pylori[J]. Molecules, 2017, 22(3):424-440.
doi: 10.3390/molecules22030424 URL |
[46] |
Neshani A, Zare H, Akbari Eidgahi MR, et al. Review of antimicrobial peptides with anti-Helicobacter pylori activity[J]. Helicobacter, 2019, 24(1):e12555.
doi: 10.1111/hel.12555 URL |
[47] |
Kang HK, Kim C, Seo CH, et al. The therapeutic applications of antimicrobial peptides(AMPs):a patent review[J]. J Microbiol, 2017, 55(1):1-12.
doi: 10.1007/s12275-017-6452-1 URL |
[48] | 彭建, 赵行行, 吴兆颖, 等. 抗菌肽Cec4的结构改造及抗菌活性研究[J]. 生物技术, 2019, 29(4):330-335. |
Peng J, Zhao XX, Wu ZY, et al. Structural modification and antibacterial related activity study of antimicrobial peptide Cec4[J]. Biotechnology, 2019, 29(4):330-335. | |
[49] |
Olleik H, Baydoun E, Perrier J, et al. Temporin-SHa and its analogs as potential candidates for the treatment of Helicobacter pylori[J]. Biomolecules, 2019, 9(10):598-620.
doi: 10.3390/biom9100598 URL |
[50] |
Ramsay KST, Wafo P, Ali Z, et al. Chemical constituents of Stereospermum acuminatissimum and their urease and α-chymotrypsin inhibitions[J]. Fitoterapia, 2012, 83(1):204-208.
doi: 10.1016/j.fitote.2011.10.014 URL |
[51] |
Nagata K, Takagi E, Satoh H, et al. Growth inhibition of Ureaplasma urealyticum by the proton pump inhibitor lansoprazole:direct attribution to inhibition by lansoprazole of urease activity and urea-induced ATP synthesis in U. urealyticum[J]. Antimicrob Agents Chemother, 1995, 39(10):2187-2192.
doi: 10.1128/AAC.39.10.2187 pmid: 8619564 |
[52] |
Sivapriya K, Suguna P, Banerjee A, et al. Facile one-pot synthesis of thio and selenourea derivatives:a new class of potent urease inhibitors[J]. Bioorg Med Chem Lett, 2007, 17(22):6387-6391.
doi: 10.1016/j.bmcl.2007.07.085 URL |
[53] |
Ni WW, Liu Q, Ren SZ, et al. The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections[J]. Bioorg Med Chem, 2018, 26(14):4145-4152.
doi: 10.1016/j.bmc.2018.07.003 URL |
[54] |
Domínguez MJ, Sanmartín C, Font M, et al. Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors[J]. J Agric Food Chem, 2008, 56(10):3721-3731.
doi: 10.1021/jf072901y URL |
[55] |
Yang YS, Su MM, Zhang XP, et al. Developing potential Helicobacter pylori urease inhibitors from novel oxoindoline derivatives:Synthesis, biological evaluation and in silico study[J]. Bioorg Med Chem Lett, 2018, 28(19):3182-3186.
doi: 10.1016/j.bmcl.2018.08.025 URL |
[56] |
Li WY, Ni WW, Ye YX, et al. N-monoarylacetothioureas as potent urease inhibitors:synthesis, SAR, and biological evaluation[J]. J Enzyme Inhib Med Chem, 2020, 35(1):404-413.
doi: 10.1080/14756366.2019.1706503 URL |
[57] |
Kataria R, Khatkar A. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of chlorogenic acid against urease protein and H. pylori bacterium[J]. BMC Chem, 2019, 13(1):41-57.
doi: 10.1186/s13065-019-0556-0 pmid: 31384789 |
[58] |
Kozioł A, Macegoniuk K, Grela E, et al. Synthesis of terpenoid oxo derivatives with antiureolytic activity[J]. Mol Biol Rep, 2019, 46(1):51-58.
doi: 10.1007/s11033-018-4442-y pmid: 30350237 |
[59] |
Ibrar A, Kazmi M, Khan A, et al. Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors:a distinctive combination of nitrogen-containing heterocycles[J]. Bioorg Chem, 2020, 95:103479.
doi: 10.1016/j.bioorg.2019.103479 URL |
[60] |
Reid G. Probiotics:definition, scope and mechanisms of action[J]. Best Pract Res Clin Gastroenterol, 2016, 30(1):17-25.
doi: 10.1016/j.bpg.2015.12.001 URL |
[61] |
Gong Y, Li Y, Sun Q. Probiotics improve efficacy and tolerability of triple therapy to eradicate Helicobacter pylori:a meta-analysis of randomized controlled trials[J]. Int J Clin Exp Med, 2015, 8(4):6530-6543.
pmid: 26131283 |
[62] |
Armuzzi A, Cremonini F, Bartolozzi F, et al. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy[J]. Aliment Pharmacol Ther, 2001, 15(2):163-169.
doi: 10.1046/j.1365-2036.2001.00923.x URL |
[63] |
Oh B, Kim JW, Kim BS. Changes in the functional potential of the gut microbiome following probiotic supplementation during Helicobacter pylori treatment[J]. Helicobacter, 2016, 21(6):493-503.
doi: 10.1111/hel.12306 URL |
[64] |
Feng JR, Wang F, Qiu X, et al. Efficacy and safety of probiotic-supplemented triple therapy for eradication of Helicobacter pylori in children:a systematic review and network meta-analysis[J]. Eur J Clin Pharmacol, 2017, 73(10):1199-1208.
doi: 10.1007/s00228-017-2291-6 URL |
[65] |
Gotteland M, Brunser O, Cruchet S. Systematic review:are probiotics useful in controlling gastric colonization by Helicobacter pylori?[J]. Aliment Pharmacol Ther, 2006, 23(8):1077-1086.
doi: 10.1111/j.1365-2036.2006.02868.x URL |
[66] |
Lee JS, Paek NS, Kwon OS, et al. Anti-inflammatory actions of probiotics through activating suppressor of cytokine signaling(SOCS)expression and signaling in Helicobacter pylori infection:a novel mechanism[J]. J Gastroenterol Hepatol, 2010, 25(1):194-202.
doi: 10.1111/j.1440-1746.2009.06127.x URL |
[67] |
Mukai TK, Asasaka T, Sato E, et al. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri[J]. FEMS Immunol Med Microbiol, 2002, 32(2):105-110.
doi: 10.1111/j.1574-695X.2002.tb00541.x URL |
[68] |
Kim TS, Hur JW, Yu MA, et al. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria[J]. J Food Prot, 2003, 66(1):3-12.
doi: 10.4315/0362-028X-66.1.3 URL |
[69] |
Şirvan BN, Usta MK, Kizilkan NU, et al. Are synbiotics added to the standard therapy to eradicate Helicobacter pylori in children beneficial? A randomized controlled study[J]. Euroasian J Hepatogastroenterol, 2017, 7(1):17-22.
doi: 10.5005/jp-journals-10018-1205 pmid: 29201766 |
[70] |
Marcial G, Villena J, Faller G, et al. Exopolysaccharide-producing Streptococcus thermophilus CRL1190 reduces the inflammatory response caused by Helicobacter pylori[J]. Benef Microbes, 2017, 8(3):451-461.
doi: 10.3920/BM2016.0186 pmid: 28504579 |
[71] |
Hu JF, Tian XQ, Wei T, et al. Anti- Helicobacter pylori activity of a Lactobacillus sp. PW-7 exopolysaccharide[J]. Foods, 2021, 10(10):2453.
doi: 10.3390/foods10102453 URL |
[72] |
Whiteside SA, Mohiuddin MM, Shlimon S, et al. In vitro framework to assess the anti-Helicobacter pylori potential of lactic acid bacteria secretions as alternatives to antibiotics[J]. Int J Mol Sci, 2021, 22(11):5650.
doi: 10.3390/ijms22115650 URL |
[73] |
Chen YH, Tsai WH, Wu HY, et al. Probiotic Lactobacillus spp. act against Helicobacter pylori-induced inflammation[J]. J Clin Med, 2019, 8(1):90.
doi: 10.3390/jcm8010090 URL |
[74] | Saracino IM, Pavoni M, Saccomanno L, et al. Antimicrobial efficacy of five probiotic strains against Helicobacter pylori[J]. Antibiotics(Basel), 2020, 9(5):244. |
[75] | Do AD, Chang CC, Su CH, et al. Lactobacillus rhamnosus JB3 inhibits Helicobacter pylori infection through multiple molecular actions[J]. Helicobacter, 2021, 26(3):e12806. |
[1] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[2] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[3] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[4] | CHEN Fu-nuan, HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei. Structure of ABC Transporter and Research Progress of It in Bacterial Pathogenicity [J]. Biotechnology Bulletin, 2022, 38(6): 43-52. |
[5] | ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects [J]. Biotechnology Bulletin, 2022, 38(6): 66-73. |
[6] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[7] | WANG Xiao-he, GU Xi-rong, QI Shun-ju, LI Jie, CUI Yao, LI De-xia, YANG Li-hui. Antioxidant Activity,Antibacterial Activity and Volatile Components of Extracts from the Branches and Leaves of Torreya fargesii Franch. [J]. Biotechnology Bulletin, 2021, 37(8): 152-161. |
[8] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[9] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[10] | TIAN Lu, WU Mi, GOU Jing-xuan, GONG Guo-li. Research and Application Progress of Bacteriocin [J]. Biotechnology Bulletin, 2021, 37(4): 224-233. |
[11] | YANG Yue, TAO Yan, XIE Jing, QIAN Yun-fang. Biosynthesis of Ctenopharyngodon idella C-type Lysozyme Based on Recombinant Pichia pastoris and Its Antibacterial Activity [J]. Biotechnology Bulletin, 2021, 37(12): 169-179. |
[12] | PAN Jing-yu, CHEN Jia-le, QIAN Yu-cheng, LIU Xin, YANG Hao-ning, LIU Li, WEI Bu-yun, ZHAO Hong-xin. Characteristics of Aureobasidium sp. 3A00493 from Deep Sea Sediment and Characteristic Analysis of Its Extracellular Polysaccharide [J]. Biotechnology Bulletin, 2021, 37(12): 71-81. |
[13] | LUO Ya-jun, SUN Hong-min, HE Ning, YUAN Li-jie, XIE Yun-ying. Isolation and Antibacterial Activity of Actinomycetes from the Nodules and Rhizosphere Soil of Hippophae rhamnoides in Tibet [J]. Biotechnology Bulletin, 2021, 37(11): 225-236. |
[14] | WANG Zhi-xin, LIU Yang, ZHOU Jing-bo, HONG Dan, LU Lei-zhen, NING Ya-wei, JIA Ying-min. Optimization of Quantitative Determination of Bacitracin Based on Turbidimetric Method [J]. Biotechnology Bulletin, 2020, 36(5): 92-97. |
[15] | ZHAO Zhen, WANG Sha-sha, LÜ Xing-xing, TAO Yan, XIE Jing, QIAN Yun-fang. Heterologous Expression of Cyclina sinensis Mytimacin Antibacterial Peptide Based on Recombinant Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||