Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 21-30.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0536
Previous Articles Next Articles
LI Sheng-yan1(), LI Xiang-yin1, LI Peng-cheng1, ZHANG Ming-jun1, ZHANG Jie2, LANG Zhi-hong1()
Received:
2022-04-29
Online:
2023-01-26
Published:
2023-02-02
Contact:
LANG Zhi-hong
E-mail:lishengyan@caas.cn;langzhihong@caas.cn
LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5[J]. Biotechnology Bulletin, 2023, 39(1): 21-30.
Fig. 1 Southern blot analysis of the target genes in the BC5S1 and BC5S2 generation of transgenic maize 2HVB5 M:DNA marker;P:transformation vector pC2HB-vp plasmid;N:negative control,backcross receptor Zheng58 maize leave genomic DNA digested with Hind III
Fig. 2 Expression analysis of target proteins in the BC5S1 and BC5S2 generation of transgenic maize 2HVB5 a:The expression of Cry2Ah-vp protein in different times and tissues;b:the expression of PAT protein in different times and tissues;V1:seedling stage;V6:elongation stage;R1:silking stage;R6:maturation stage. Data showed in the figure are mean ± SD
Fig. 3 AW and CB bioassay results of BC5S1 and BC5S2 generation transgenic maize 2HVB5 in laboratory a:The corrected mortality rates of AW and CB larvae after feeding on the transgenic maize 2HVB5. b:The comparison of transgenic maize 2HVB5 and control Z58 after feeding by AW and CB larvae. AW:Armyworm(Mythimna separate). CB:Cotton bollworm(Helicoverpa armigera)
Fig. 4 FAW bioassay results of BC5S1 and BC5S2 generation transgenic maize 2HVB5 in laboratory a:The corrected mortality rates of FAW larvae after feeding on the transgenic maize 2HVB5. b:The weight of FAW larva after feeding on transgenic maize 2HVB5 and control Z58. FAW:Fall Armyworm. Asterisks indicate significant differences(P<0.01),the same below
代别 Generation | 试验材料 Sample | 食叶级别 Grade of leaf damage | 抗性类型 Type of resistance |
---|---|---|---|
BC5S1 | 2HVB5 | 1.19±0.40a | 高抗 |
Z58 | 7.10±0.94b | 感 | |
BC5S2 | 2HVB5 | 1.29±0.56a | 高抗 |
Z58 | 7.05±1.24b | 感 |
Table 1 Leaf damage grades of AW at whorl stage
代别 Generation | 试验材料 Sample | 食叶级别 Grade of leaf damage | 抗性类型 Type of resistance |
---|---|---|---|
BC5S1 | 2HVB5 | 1.19±0.40a | 高抗 |
Z58 | 7.10±0.94b | 感 | |
BC5S2 | 2HVB5 | 1.29±0.56a | 高抗 |
Z58 | 7.05±1.24b | 感 |
代别 Generation | 试验材料 Samples | 食穗级别 Grade of ear damage | 抗性类型 Type of resistance |
---|---|---|---|
BC5S1 | 2HVB5 | 0.60±0.56a | 高抗 |
Z58 | 3.20±1.73b | 中抗 | |
BC5S2 | 2HVB5 | 0.73±0.45a | 高抗 |
Z58 | 3.97±1.47b | 中抗 |
Table 2 Ear damage grades of CB at silking stage
代别 Generation | 试验材料 Samples | 食穗级别 Grade of ear damage | 抗性类型 Type of resistance |
---|---|---|---|
BC5S1 | 2HVB5 | 0.60±0.56a | 高抗 |
Z58 | 3.20±1.73b | 中抗 | |
BC5S2 | 2HVB5 | 0.73±0.45a | 高抗 |
Z58 | 3.97±1.47b | 中抗 |
代别 Generation | 材料 Samples | 草铵膦处理 Glufosinate treatment/(g·hm-2) | 成苗率Planting percent/% | 植株高度Plant height/cm | 受害率Damage percent/% | 单株产量 Yield per plant/g | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1周 1 week | 2周 2 weeks | 4周 4 weeks | 1周 1 week | 2周 2 weeks | 4周 4 weeks | 1周 1 week | 2周 2 weeks | 4周 4 weeks | ||||
BC5S1 | Z58 | 0 | 100 | 100 | 100 | 46.3±1.38a | 54.95±1.47a | 113.45±1.47a | 0 | 0 | 0 | 106.7±2.32a |
2HVB5 | 100 | 100 | 100 | 46.65±1.14a | 55.7±1.34a | 113.6±1.5a | 0 | 0 | 0 | 105.7±2.62a | ||
Z58 | 600 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 46.5±1.15a | 55.05±1.19a | 113.15±1.95a | 0 | 0 | 0 | 106.6±2.68a | ||
Z58 | 1 200 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 46.35±0.99a | 55±1.56a | 112.5±2.14a | 0 | 0 | 0 | 105±2.70a | ||
Z58 | 2 400 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 47.1±1.07a | 55±1.65a | 113.5±2.48a | 0 | 0 | 0 | 106.7±2.45a | ||
BC5S2 | Z58 | 0 | 100 | 100 | 100 | 46.05±1.32a | 53.1±1.62a | 112.45±1.7a | 0 | 0 | 0 | 106.4±2.56a |
2HVB5 | 100 | 100 | 100 | 45.25±1.07a | 53.95±1.43a | 112.55±2.04a | 0 | 0 | 0 | 106.6±2.95a | ||
Z58 | 600 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 46±1.21a | 53±1.62a | 112.7±2.05a | 0 | 0 | 0 | 105.15±2.16a | ||
Z58 | 1 200 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 45.85±1.39a | 53.5±1.54a | 112.1±1.62a | 0 | 0 | 0 | 106.5±2.89a | ||
Z58 | 2 400 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 45.65±1.35a | 53.45±1.76a | 112.95±1.54a | 0 | 0 | 0 | 106.45±2.5a |
Table 3 Results of BC5S1 and BC5S2 generation transgenic maize 2HVB5 after glufosinate application
代别 Generation | 材料 Samples | 草铵膦处理 Glufosinate treatment/(g·hm-2) | 成苗率Planting percent/% | 植株高度Plant height/cm | 受害率Damage percent/% | 单株产量 Yield per plant/g | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1周 1 week | 2周 2 weeks | 4周 4 weeks | 1周 1 week | 2周 2 weeks | 4周 4 weeks | 1周 1 week | 2周 2 weeks | 4周 4 weeks | ||||
BC5S1 | Z58 | 0 | 100 | 100 | 100 | 46.3±1.38a | 54.95±1.47a | 113.45±1.47a | 0 | 0 | 0 | 106.7±2.32a |
2HVB5 | 100 | 100 | 100 | 46.65±1.14a | 55.7±1.34a | 113.6±1.5a | 0 | 0 | 0 | 105.7±2.62a | ||
Z58 | 600 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 46.5±1.15a | 55.05±1.19a | 113.15±1.95a | 0 | 0 | 0 | 106.6±2.68a | ||
Z58 | 1 200 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 46.35±0.99a | 55±1.56a | 112.5±2.14a | 0 | 0 | 0 | 105±2.70a | ||
Z58 | 2 400 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 47.1±1.07a | 55±1.65a | 113.5±2.48a | 0 | 0 | 0 | 106.7±2.45a | ||
BC5S2 | Z58 | 0 | 100 | 100 | 100 | 46.05±1.32a | 53.1±1.62a | 112.45±1.7a | 0 | 0 | 0 | 106.4±2.56a |
2HVB5 | 100 | 100 | 100 | 45.25±1.07a | 53.95±1.43a | 112.55±2.04a | 0 | 0 | 0 | 106.6±2.95a | ||
Z58 | 600 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 46±1.21a | 53±1.62a | 112.7±2.05a | 0 | 0 | 0 | 105.15±2.16a | ||
Z58 | 1 200 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 45.85±1.39a | 53.5±1.54a | 112.1±1.62a | 0 | 0 | 0 | 106.5±2.89a | ||
Z58 | 2 400 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 0 | |
2HVB5 | 100 | 100 | 100 | 45.65±1.35a | 53.45±1.76a | 112.95±1.54a | 0 | 0 | 0 | 106.45±2.5a |
代别 Generation | 材料 Sample | 草铵膦处理 Glufosinate treatment/(g·hm-2) | 株高 Plant height/cm | 穗位高 Ear height/ cm | 穗长 Ear length/ cm | 穗粗 Ear diameter /cm | 秃尖长 Bare tip length/cm | 穗行数 Rows per ear | 行粒数 Kernels per row | 千粒重 1 000-grain weight/g | 单株产量 Yield per plant/g |
---|---|---|---|---|---|---|---|---|---|---|---|
BC5S1 | 郑58 | 0 | 139.65±2.13a | 32.25±2.24a | 16.1±1.17a | 4.07±0.1a | 0 | 13.75±0.79a | 27.95±0.83a | 280.6±3.66a | 106.7±2.32a |
2HVB5 | 0 | 139.4±1.93a | 32.15±2.23a | 16.55±1.15a | 4.1±0.16a | 0 | 13.9±0.85a | 28.1±0.72a | 279.55±3.2a | 105.7±2.62a | |
2HVB5 | 600 | 139.65±2.46a | 32.3±1.66a | 16.65±1.27a | 4.12±0.16a | 0 | 13.85±0.81a | 28±0.86a | 280.1±3.77a | 106.6±2.68a | |
2HVB5 | 1 200 | 139.9±2.63a | 32.05±1.96a | 16.55±1.15a | 4.1±0.14a | 0 | 14.1±0.79a | 28.3±0.86a | 280.8±2.55a | 105±2.7a | |
2HVB5 | 2 400 | 139.95±2.46a | 32.3±1.84a | 16.5±1.43a | 4.12±0.15a | 0 | 14.05±0.83a | 28.3±0.66a | 279.35±3.41a | 106.7±2.45a | |
BC5S2 | 郑58 | 0 | 141.45±1.85a | 32.4±1.82a | 16.55±1.1a | 4.08±0.12a | 0 | 14±0.79a | 28.25±0.91a | 279.9±2.92a | 106.4±2.56a |
2HVB5 | 0 | 142.5±1.61a | 33.15±2.06a | 16.25±1.16a | 4.09±0.14a | 0 | 14.05±0.83a | 28.1±0.79a | 280.4±2.93a | 106.6±2.95a | |
2HVB5 | 600 | 141.8±1.94a | 32.65±2.11a | 16.45±1.1a | 4.13±0.19a | 0 | 14±0.86a | 27.85±0.75a | 278.55±2.5a | 105.15±2.16a | |
2HVB5 | 1 200 | 141.55±2.01a | 33.1±2.07a | 16.25±0.79a | 4.13±0.16a | 0 | 13.7±0.8a | 28.1±0.79a | 279.25±3.51a | 106.5±2.89a | |
2HVB5 | 2 400 | 141.4±1.79a | 32.25±2.22a | 16.3±0.92a | 4.11±0.14a | 0 | 14.1±0.85a | 28.25±0.85a | 280.3±3.25a | 106.45±2.5a |
Table 4 Agronomic traits of BC5S1 and BC5S2 generation transgenic maize 2HVB5
代别 Generation | 材料 Sample | 草铵膦处理 Glufosinate treatment/(g·hm-2) | 株高 Plant height/cm | 穗位高 Ear height/ cm | 穗长 Ear length/ cm | 穗粗 Ear diameter /cm | 秃尖长 Bare tip length/cm | 穗行数 Rows per ear | 行粒数 Kernels per row | 千粒重 1 000-grain weight/g | 单株产量 Yield per plant/g |
---|---|---|---|---|---|---|---|---|---|---|---|
BC5S1 | 郑58 | 0 | 139.65±2.13a | 32.25±2.24a | 16.1±1.17a | 4.07±0.1a | 0 | 13.75±0.79a | 27.95±0.83a | 280.6±3.66a | 106.7±2.32a |
2HVB5 | 0 | 139.4±1.93a | 32.15±2.23a | 16.55±1.15a | 4.1±0.16a | 0 | 13.9±0.85a | 28.1±0.72a | 279.55±3.2a | 105.7±2.62a | |
2HVB5 | 600 | 139.65±2.46a | 32.3±1.66a | 16.65±1.27a | 4.12±0.16a | 0 | 13.85±0.81a | 28±0.86a | 280.1±3.77a | 106.6±2.68a | |
2HVB5 | 1 200 | 139.9±2.63a | 32.05±1.96a | 16.55±1.15a | 4.1±0.14a | 0 | 14.1±0.79a | 28.3±0.86a | 280.8±2.55a | 105±2.7a | |
2HVB5 | 2 400 | 139.95±2.46a | 32.3±1.84a | 16.5±1.43a | 4.12±0.15a | 0 | 14.05±0.83a | 28.3±0.66a | 279.35±3.41a | 106.7±2.45a | |
BC5S2 | 郑58 | 0 | 141.45±1.85a | 32.4±1.82a | 16.55±1.1a | 4.08±0.12a | 0 | 14±0.79a | 28.25±0.91a | 279.9±2.92a | 106.4±2.56a |
2HVB5 | 0 | 142.5±1.61a | 33.15±2.06a | 16.25±1.16a | 4.09±0.14a | 0 | 14.05±0.83a | 28.1±0.79a | 280.4±2.93a | 106.6±2.95a | |
2HVB5 | 600 | 141.8±1.94a | 32.65±2.11a | 16.45±1.1a | 4.13±0.19a | 0 | 14±0.86a | 27.85±0.75a | 278.55±2.5a | 105.15±2.16a | |
2HVB5 | 1 200 | 141.55±2.01a | 33.1±2.07a | 16.25±0.79a | 4.13±0.16a | 0 | 13.7±0.8a | 28.1±0.79a | 279.25±3.51a | 106.5±2.89a | |
2HVB5 | 2 400 | 141.4±1.79a | 32.25±2.22a | 16.3±0.92a | 4.11±0.14a | 0 | 14.1±0.85a | 28.25±0.85a | 280.3±3.25a | 106.45±2.5a |
[1] | 国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021. |
National Bureau of Statistics. China Statistical Yearbook 2021[M]. Beijing: China Statistics Press, 2021. | |
[2] | 卜华虎, 任志强, 肖建红, 等. 玉米抗虫研究进展[J]. 中国农学通报, 2019, 35(30): 145-149. |
Bu HH, Ren ZQ, Xiao JH, et al. Research progress of maize insect resistance[J]. Chin Agric Sci Bull, 2019, 35(30): 145-149. | |
[3] | 金凤, 张亚东. 玉米粘虫的发生与防治[J]. 吉林农业, 2017(1): 83. |
Jin F, Zhang YD. Occurrence and control of corn armyworm[J]. Agric Jilin, 2017(1): 83. | |
[4] | 郭松景, 李世民, 卓喜牛, 等. 玉米田棉铃虫的发生危害特点及分布型研究[J]. 河南农业科学, 2004, 33(11): 45-47. |
Guo SJ, Li SM, Zhuo XN, et al. The occurrence, damage characteristics and distribution pattern of cotton bollworm in corn field[J]. J Henan Agric Sci, 2004, 33(11): 45-47. | |
[5] | 杨普云, 朱晓明, 郭井菲, 等. 我国草地贪夜蛾的防控对策与建议[J]. 植物保护, 2019, 45(4): 1-6. |
Yang PY, Zhu XM, Guo JF, et al. Strategy and advice for managing the fall armyworm in China[J]. Plant Prot, 2019, 45(4): 1-6. | |
[6] | ISAAA, Global Status of Commercialized Biotech/GM Crops in 2019:Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier[M]. ISAAA Brief No. 55. ISAAA: Ithaca, NY, 2019. |
[7] |
Shu CL, Zhang JT, Chen GH, et al. Use of a pooled clone method to isolate a novel Bacillus thuringiensis Cry2A toxin with activity against Ostrinia furnacalis[J]. J Invertebr Pathol, 2013, 114(1): 31-33.
doi: 10.1016/j.jip.2013.05.005 URL |
[8] | 刘臣, 张丹丹, 王泽宇, 等. 棉铃虫对不同Bt蛋白的抗性及交互抗性研究[J]. 应用昆虫学报, 2018, 55(1): 55-60. |
Liu C, Zhang DD, Wang ZY, et al. Resistance, and cross-resistance, of Helicoverpa armigera to different Bt proteins[J]. Chin J Appl Entomol, 2018, 55(1): 55-60. | |
[9] |
Li SY, Wang ZY, Zhou YY, et al. Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm[J]. Sci Rep, 2018, 8(1): 508.
doi: 10.1038/s41598-017-19064-5 pmid: 29323243 |
[10] | 李梦桃, 李圣彦, 汪海, 等. 转cry2Ah-vp基因玉米的抗虫性鉴定[J]. 植物保护学报, 2020, 47(1): 74-83. |
Li MT, Li SY, Wang H, et al. Identification of insect resistance in the transgenic maize harboring cry2Ah-vp gene[J]. J Plant Prot, 2020, 47(1): 74-83. | |
[11] | 王振营, 王冬妍, 何康来, 等. 转 Bt 基因玉米对粘虫的室内杀虫效果评价[J]. 植物保护学报, 2005, 32(2): 153-157. |
Wang ZY, Wang DY, He KL, et al. Evaluation the control effects of the transgenic Bacillus thuringiensis corn expressing CrylAb protein on the larvae of Mythimna separata(Walker)in laboratory[J]. J Plant Prot, 2005, 32(2): 153-157. | |
[12] | 武奉慈, 翁建峰, 李新海, 等. 转Cry1Ab-ma基因玉米CM8101对草地贪夜蛾1龄和2龄幼虫的抗性[J]. 植物保护学报, 2020, 47(4): 815-821. |
Wu FC, Weng JF, Li XH, et al. Resistance of transgenic maize CM8101 with Cry1Ab-ma gene against the 1st and 2nd instar larvae of fall armyworm Spodoptera frugiperda[J]. J Plant Prot, 2020, 47(4): 815-821. | |
[13] | 常雪艳, 何康来, 王振营, 等. 转Bt基因玉米对棉铃虫的抗性评价[J]. 植物保护学报, 2006, 33(4): 374-378. |
Chang XY, He KL, Wang ZY, et al. Evaluation of transgenic Bt maize for resistance to cotton ballworm[J]. J Plant Prot, 2006, 33(4): 374-378. | |
[14] |
Kim SI, Veena, Gelvin SB. Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions[J]. Plant J, 2007, 51(5): 779-791.
doi: 10.1111/j.1365-313X.2007.03183.x URL |
[15] | Shilo S, Tripathi P, Melamed-Bessudo C, et al. T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome[J]. PLoS Genet, 2017, 13(7): e1006875. |
[16] | Dong OX, Ronald PC. Targeted DNA insertion in plants[J]. PNAS, 2021, 118(22): e2004834117. |
[17] |
Tabashnik BE, Gassmann AJ, Crowder DW, et al. Insect resistance to Bt crops:evidence versus theory[J]. Nat Biotechnol, 2008, 26(2): 199-202.
doi: 10.1038/nbt1382 pmid: 18259177 |
[18] | van Rensburg JBJ. First report of field resistance by the stem borer, Busseola fusca(Fuller)to Bt-transgenic maize[J]. S Afr N J Plant Soil, 2007, 24(3): 147-151. |
[19] |
Storer NP, Babcock JM, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda(Lepidoptera:Noctuidae)in Puerto Rico[J]. J Econ Entomol, 2010, 103(4): 1031-1038.
doi: 10.1603/EC10040 URL |
[20] | Fatoretto JC, Michel AP, Silva Filho MC, et al. Adaptive potential of fall armyworm(Lepidoptera:Noctuidae)limits bt trait durability in Brazil[J]. J Integr Pest Manag, 2017, 8(1): 17. |
[21] |
Li GP, Wu KM, Gould F, et al. Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China[J]. Ecol Entomol, 2007, 32(4): 366-375.
doi: 10.1111/j.1365-2311.2007.00891.x URL |
[22] |
Carrière Y, Crickmore N, Tabashnik BE. Optimizing pyramided transgenic Bt crops for sustainable pest management[J]. Nat Biotechnol, 2015, 33(2): 161-168.
doi: 10.1038/nbt.3099 pmid: 25599179 |
[23] |
Carrière Y, Fabrick JA, Tabashnik BE. Can Pyramids and seed mixtures delay resistance to Bt crops?[J]. Trends Biotechnol, 2016, 34(4): 291-302.
doi: S0167-7799(15)00271-1 pmid: 26774592 |
[24] |
Wei JZ, Guo YY, Liang GM, et al. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm[J]. Sci Rep, 2015, 5:7714.
doi: 10.1038/srep07714 pmid: 25586723 |
[25] | 魏纪珍. 棉铃虫受体蛋白在Cry1Ac、Cry2Ab交互抗性中的作用[D]. 北京: 中国农业科学院, 2016. |
Wei JZ. The roles of receptors in the mechanism of cross-resistance between Cry1Ac and Cry2Ab in cotton bollworm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[26] |
焦悦, 韩宇, 杨桥, 等. 全球转基因玉米商业化发展态势概述及启示[J]. 生物技术通报, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803 |
Jiao Y, Han Y, Yang Q, et al. Commercialization development trend of genetically modified maize and the enlightenment[J]. Biotechnol Bull, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803 |
|
[27] | 杨益军, 张波. 2021年全球氨基酸类除草剂发展概况和趋势综述[J]. 世界农药, 2021, 43(4): 19-34. |
Yang YJ, Zhang B. Overview of the development and trend summary of the global amino acid herbicide market(2021)[J]. World Pestic, 2021, 43(4): 19-34. |
[1] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[2] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
[3] | LI Cong-cong, Xie Ping, DONG Li-ming, XIA Wei, LAN Qing-kuo, YAN Wei, LONG Li-kun, LI Fei-wu. Qualitative PCR Assay for the Detection of GH5112E-117C Transgenic Maize Resistant to Insects and Herbicides [J]. Biotechnology Bulletin, 2020, 36(5): 64-67. |
[4] | WANG Cui-yun, LIU Yan, LIU Yun-jun. Analysis of the Integration Site of Exogenous Gene in Transgenic Maize [J]. Biotechnology Bulletin, 2019, 35(3): 1-5. |
[5] | LIANG Hai-sheng, LI Meng-tao, LI Sheng-yan, WANG Hai, ZHANG Jie, LANG Zhi-hong. Agronomic Traits Analysis of Transgenic Bt cry1Ah Maize HGK60 Line [J]. Biotechnology Bulletin, 2018, 34(7): 92-100. |
[6] | MA Yan-ling, LIU Fu-lai, ZHANG Min, SUN Yu-hui, HONG Kui. The Construction of the Gene Transfer System of Strain Streptomyces sp. 211726 Producing Azalomycin F [J]. Biotechnology Bulletin, 2016, 32(4): 198-202. |
[7] | ZHENG Ying,LIU Jia-yi,ZUO Xuan,LI Sheng-yan,WU Sheng,NIE Feng-ying. Research Situation of Transgenic Corn Based on Bibliometrics and Content Mining [J]. Biotechnology Bulletin, 2016, 32(12): 203-213. |
[8] | Wang Jianjun, Yang Huizhen, Liu Jiao. Genetic Analysis of cryIAC Gene in Transgenic Maize Plants and Its Effects on Insect-resistance [J]. Biotechnology Bulletin, 2015, 31(1): 122-130. |
[9] | Wang Ning. Research Progress of Transgenic Maize in China Based on Bibliometrics [J]. Biotechnology Bulletin, 2014, 0(10): 230-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||