Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (10): 41-49.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0655
Previous Articles Next Articles
ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren()
Received:
2023-07-10
Online:
2023-10-26
Published:
2023-11-28
ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter[J]. Biotechnology Bulletin, 2023, 39(10): 41-49.
[25] |
Wirtz DA, Ludwig KC, Arts M, et al. Biosynthesis and mechanism of action of the cell wall targeting antibiotic hypeptin[J]. Angew Chem Int Ed Engl, 2021, 60(24): 13579-13586.
doi: 10.1002/anie.v60.24 URL |
[26] |
Lee W, Schaefer K, Qiao Y, et al. The mechanism of action of lysobactin[J]. J Am Chem Soc, 2016, 138(1): 100-103.
doi: 10.1021/jacs.5b11807 pmid: 26683668 |
[27] |
Sullivan JR, Yao J, Courtine C, et al. Natural products lysobactin and sorangicin A show in vitro activity against Mycobacterium abscessus complex[J]. Microbiol Spectr, 2022, 10(6): e0267222.
doi: 10.1128/spectrum.02672-22 URL |
[28] |
Sang ML, Wang HX, Shen YM, et al. Identification of an anti-MRSA cyclic lipodepsipeptide, WBP-29479A1, by genome mining of Lysobacter antibioticus[J]. Org Lett, 2019, 21(16): 6432-6436.
doi: 10.1021/acs.orglett.9b02333 URL |
[29] |
Itoh H, Tokumoto K, Kaji T, et al. Total synthesis and biological mode of action of WAP-8294A2: a menaquinone-targeting antibiotic[J]. J Org Chem, 2018, 83(13): 6924-6935.
doi: 10.1021/acs.joc.7b02318 pmid: 29019678 |
[30] |
Itoh H, Tokumoto K, Kaji T, et al. Development of a high-throughput strategy for discovery of potent analogues of antibiotic lysocin E[J]. Nat Commun, 2019, 10(1): 2992.
doi: 10.1038/s41467-019-10754-4 pmid: 31278250 |
[31] |
Geberetsadik G, Inaizumi A, Nishiyama A, et al. Lysocin E targeting menaquinone in the membrane of Mycobacterium tuberculosis is a promising lead compound for antituberculosis drugs[J]. Antimicrob Agents Chemother, 2022, 66(9): e0017122.
doi: 10.1128/aac.00171-22 URL |
[32] |
Li YY, Chen HT, Ding YJ, et al. Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF[J]. Angew Chem Int Ed Engl, 2014, 53(29): 7524-7530.
doi: 10.1002/anie.v53.29 URL |
[33] |
Li SJ, Calvo AM, Yuen GY, et al. Induction of cell wall thickening by the antifungal compound dihydromaltophilin disrupts fungal growth and is mediated by sphingolipid biosynthesis[J]. J Eukaryot Microbiol, 2009, 56(2): 182-187.
doi: 10.1111/j.1550-7408.2008.00384.x pmid: 21462551 |
[34] |
Ding YJ, Li ZY, Li YY, et al. HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis[J]. RSC Adv, 2016, 6(37): 30895-30904.
doi: 10.1039/C5RA26092B URL |
[35] |
Demirev AV, Lee CH, Jaishy BP, et al. Substrate specificity of nonribosomal peptide synthetase modules responsible for the biosynthesis of the oligopeptide moiety of cephabacin in Lysobacter lactamgenus[J]. FEMS Microbiol Lett, 2006, 255(1): 121-128.
doi: 10.1111/fml.2006.255.issue-1 URL |
[36] | Xu QS, Zou HC, Pan C, et al. Lysohexaenetides A and B, linear lipopeptides from Lysobacter sp. DSM 3655 identified by heterologous expression in Streptomyces[J]. Chin J Nat Med, 2023, 21(6): 454-458. |
[37] |
Macheboeuf P, Fischer DS, Brown T Jr, et al. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins[J]. Nat Chem Biol, 2007, 3(9): 565-569.
pmid: 17676039 |
[38] |
Cimmino A, Bejarano A, Masi M, et al. Isolation of 2, 5-diketopiperazines from Lysobacter capsici AZ78 with activity against Rhodococcus fascians[J]. Nat Prod Res, 2021, 35(23): 4969-4977.
doi: 10.1080/14786419.2020.1756803 URL |
[39] |
Zhao YY, Qian GL, Ye YH, et al. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus[J]. Org Lett, 2016, 18(10): 2495-2498.
doi: 10.1021/acs.orglett.6b01089 URL |
[40] |
Laborda P, Zhao YY, Ling J, et al. Production of antifungal p-aminobenzoic acid in Lysobacter antibioticus OH13[J]. J Agric Food Chem, 2018, 66(3): 630-636.
doi: 10.1021/acs.jafc.7b05084 URL |
[41] |
Li SR, Wu XL, Zhang LM, et al. Activation of a cryptic gene cluster in Lysobacter enzymogenes reveals a module/domain portable mechanism of nonribosomal peptide synthetases in the biosynthesis of pyrrolopyrazines[J]. Org Lett, 2017, 19(19): 5010-5013.
doi: 10.1021/acs.orglett.7b01611 URL |
[42] |
Miller AL, Li SR, Eichhorn CD, et al. Identification and biosynthetic study of the siderophore lysochelin in the biocontrol agent Lysobacter enzymogenes[J]. J Agric Food Chem, 2023, 71(19): 7418-7426.
doi: 10.1021/acs.jafc.3c01250 URL |
[43] |
Santoyo G, del Carmen Orozco-Mosqueda M, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species ofBacillusandPseudomonas: a review[J]. Biocontrol Sci Technol, 2012, 22(8): 855-872.
doi: 10.1080/09583157.2012.694413 URL |
[44] |
Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation[J]. Appl Environ Microbiol, 2015, 81(20): 7098-7105.
doi: 10.1128/AEM.01781-15 URL |
[1] |
Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities[J]. Nat Rev Drug Discov, 2021, 20(3): 200-216.
doi: 10.1038/s41573-020-00114-z pmid: 33510482 |
[2] |
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future[J]. Curr Opin Microbiol, 2019, 51: 72-80.
doi: S1369-5274(19)30019-0 pmid: 31733401 |
[3] |
Panthee S, Hamamoto H, Paudel A, et al. Lysobacter species: a potential source of novel antibiotics[J]. Arch Microbiol, 2016, 198(9): 839-845.
doi: 10.1007/s00203-016-1278-5 pmid: 27541998 |
[4] |
Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio[J]. Int J Syst Bacteriol, 1978, 28(3): 367-393.
doi: 10.1099/00207713-28-3-367 URL |
[5] |
Yue H, Miller AL, Khetrapal V, et al. Biosynthesis, regulation, and engineering of natural products from Lysobacter[J]. Nat Prod Rep, 2022, 39(4): 842-874.
doi: 10.1039/D1NP00063B URL |
[6] |
Naushad S, Adeolu M, Wong S, et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives[J]. Antonie Van Leeuwenhoek, 2015, 107(2): 467-485.
doi: 10.1007/s10482-014-0344-8 URL |
[7] |
Park JH, Kim R, Aslam Z, et al. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter[J]. Int J Syst Evol Microbiol, 2008, 58(Pt 2): 387-392.
doi: 10.1099/ijs.0.65290-0 URL |
[8] |
Xu JY, Sheng MY, Yang Z, et al. Lysobacter gilvus sp. nov., isolated from activated sludge[J]. Arch Microbiol, 2021, 203(1): 7-11.
doi: 10.1007/s00203-020-01943-7 |
[9] | Liu ZY, Jiang PQ, Niu GJ, et al. Lysobacter antarcticus sp. nov., an SUF-system-containing bacterium from Antarctic coastal sediment[J]. Int J Syst Evol Microbiol, 2022, 72(2): 10.1099/ijsem.0.005250. |
[10] |
Lin SY, Hameed A, Wen CZ, et al. Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum[J]. Antonie Van Leeuwenhoek, 2015, 107(5): 1261-1270.
doi: 10.1007/s10482-015-0419-1 URL |
[45] | 姬广海. 溶杆菌属及其在植物病害防治中的研究进展[J]. 云南农业大学学报: 自然科学版, 2011, 26(1): 124-130. |
Ji GH. Advances in the study on Lysobacter spp. bacteria and their effects on biological control of plant diseases[J]. J Yunnan Agric Univ Nat Sci Ed, 2011, 26(1): 124-130. | |
[46] |
Zhao YY, Jiang TP, Xu HY, et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose[J]. Microbiol Res, 2021, 242: 126624.
doi: 10.1016/j.micres.2020.126624 URL |
[47] |
Lin L, Yang ZX, Tao M, et al. Lysobacter enzymogenes prevents Phytophthora infection by inhibiting pathogen growth and eliciting plant immune responses[J]. Front Plant Sci, 2023, 14: 1116147.
doi: 10.3389/fpls.2023.1116147 URL |
[48] |
Lin L, Xu KW, Shen DY, et al. Antifungal weapons of Lysobacter, a mighty biocontrol agent[J]. Environ Microbiol, 2021, 23(10): 5704-5715.
doi: 10.1111/emi.v23.10 URL |
[49] |
Yang MM, Ren SS, Shen DY, et al. An intrinsic mechanism for coordinated production of the contact-dependent and contact-independent weapon systems in a soil bacterium[J]. PLoS Pathog, 2020, 16(10): e1008967.
doi: 10.1371/journal.ppat.1008967 URL |
[50] |
Shen X, Wang BX, Yang ND, et al. Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system[J]. Environ Microbiol, 2021, 23(8): 4673-4688.
doi: 10.1111/1462-2920.15662 pmid: 34227200 |
[51] |
Kilic-Ekici O, Yuen GY. Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3[J]. Phytopathology, 2003, 93(9): 1103-1110.
doi: 10.1094/PHYTO.2003.93.9.1103 pmid: 18944093 |
[52] |
Folman LB, Postma J, van Veen JA. Characterisation of Lysobacter enzymogenes(Christensen and Cook 1978)strain 3.1T8, a powerful antagonist of fungal diseases of cucumber[J]. Microbiol Res, 2003, 158(2): 107-115.
doi: 10.1078/0944-5013-00185 URL |
[53] |
Qian GL, Hu BS, Jiang YH, et al. Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens[J]. Agric Sci China, 2009, 8(1): 68-75.
doi: 10.1016/S1671-2927(09)60010-9 URL |
[11] |
Choi H, Im WT, Park JS. Lysobacter spongiae sp. nov., isolated from spongin[J]. J Microbiol, 2018, 56(2): 97-103.
doi: 10.1007/s12275-018-7462-3 |
[12] |
Pereira JQ, Lopes FC, Petry MV, et al. Isolation of three novel Antarctic psychrotolerant feather-degrading bacteria and partial purification of keratinolytic enzyme from Lysobacter sp. A03[J]. Int Biodeterior Biodegrad, 2014, 88: 1-7.
doi: 10.1016/j.ibiod.2013.11.012 URL |
[13] |
Wen CF, Xi LX, She R, et al. Lysobacter chengduensis sp. nov. isolated from the air of captive Ailuropoda melanoleuca enclosures in Chengdu, China[J]. Curr Microbiol, 2016, 72(1): 88-93.
doi: 10.1007/s00284-015-0921-8 URL |
[14] | Xu SS, Li AZ, Zhang MX, et al. Lysobacter penaei sp. nov., isolated from intestinal content of a Pacific white shrimp(Penaeus vannamei)[J]. Int J Syst Evol Microbiol, 2021, 71(3): 004593. |
[15] |
Busse HJ, Huptas C, Baumgardt S, et al. Proposal of Lysobacter pythonis sp. nov. isolated from royal pythons(Python regius)[J]. Syst Appl Microbiol, 2019, 42(3): 326-333.
doi: 10.1016/j.syapm.2019.02.002 URL |
[16] |
Bai H, Lv HB, Deng AH, et al. Lysobacter oculi sp. nov., isolated from human Meibomian gland secretions[J]. Antonie Van Leeuwenhoek, 2020, 113(1): 13-20.
doi: 10.1007/s10482-019-01289-1 |
[17] |
Lee SY, Kim PS, Sung H, et al. Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork[J]. J Microbiol, 2022, 60(5): 469-477.
doi: 10.1007/s12275-022-1647-5 |
[18] |
Liu YY, Zhou LY, Yang XP, et al. Lysobacter chinensis sp. nov., a cellulose-degrading strain isolated from cow dung compost[J]. Antonie Van Leeuwenhoek, 2022, 115(8): 1031-1040.
doi: 10.1007/s10482-022-01755-3 |
[19] |
Brucker RM, Baylor CM, Walters RL, et al. The identification of 2, 4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus[J]. J Chem Ecol, 2008, 34(1): 39-43.
doi: 10.1007/s10886-007-9352-8 pmid: 18058176 |
[20] |
de Bruijn I, Cheng X, de Jager V, et al. Comparative genomics and metabolic profiling of the genus Lysobacter[J]. BMC Genomics, 2015, 16: 991.
doi: 10.1186/s12864-015-2191-z pmid: 26597042 |
[21] |
Maki H, Miura K, Yamano Y. Katanosin B and plusbacin a(3), inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2001, 45(6): 1823-1827.
pmid: 11353632 |
[22] |
Miess H, van Trappen S, Cleenwerck I, et al. Reclassification of Pseudomonas sp. PB-6250T as Lysobacter firmicutimachus sp. nov[J]. Int J Syst Evol Microbiol, 2016, 66(10): 4162-4166.
doi: 10.1099/ijsem.0.001329 URL |
[23] |
Hashizume H, Hattori S, Igarashi M, et al. Tripropeptin E, a new tripropeptin group antibiotic produced by Lysobacter sp. BMK333-48F3[J]. J Antibiot, 2004, 57(6): 394-399.
pmid: 15323129 |
[24] |
Hashizume H, Sawa R, Harada S, et al. Tripropeptin C blocks the lipid cycle of cell wall biosynthesis by complex formation with undecaprenyl pyrophosphate[J]. Antimicrob Agents Chemother, 2011, 55(8): 3821-3828.
doi: 10.1128/AAC.00443-11 pmid: 21628543 |
[54] |
Brescia F, Vlassi A, Bejarano A, et al. Characterisation of the antibiotic profile of Lysobacter capsici AZ78, an effective biological control agent of plant pathogenic microorganisms[J]. Microorganisms, 2021, 9(6): 1320.
doi: 10.3390/microorganisms9061320 URL |
[55] |
Ko HS, Jin RD, Krishnan HB, et al. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes[J]. Curr Microbiol, 2009, 59(6): 608-615.
doi: 10.1007/s00284-009-9481-0 URL |
[56] |
Li S, Jochum CC, Yu F, et al. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control[J]. Phytopathology, 2008, 98(6): 695-701.
doi: 10.1094/PHYTO-98-6-0695 pmid: 18944294 |
[57] |
Nian J, Yu MH, Bradley CA, et al. Lysobacter enzymogenes strain C3 suppresses mycelium growth and spore germination of eight soybean fungal and oomycete pathogens and decreases disease incidences[J]. Biol Contr, 2021, 152: 104424.
doi: 10.1016/j.biocontrol.2020.104424 URL |
[58] | Ding YJ, Li YY, Li ZY, et al. Alteramide B is a microtubule antagonist of inhibiting Candida albicans[J]. Biochim Biophys Acta, 2016, 1860(10): 2097-2106. |
[59] |
Ji GH, Wei LF, He YQ, et al. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1[J]. Biol Contr, 2008, 45(3): 288-296.
doi: 10.1016/j.biocontrol.2008.01.004 URL |
[60] | Jiang YH, Liu T, Shi XC, et al. P-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity[J]. Pest Manag Sci, 2023. |
[61] |
Chen J, Moore WH, Yuen GY, et al. Influence of Lysobacter enzymogenes strain C3 on nematodes[J]. J Nematol, 2006, 38(2): 233-239.
pmid: 19259452 |
[62] |
Lee Y, Anees M, Hyun H, et al. Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato[J]. Nematology, 2013, 15(5): 545-555.
doi: 10.1163/15685411-00002700 URL |
[63] |
Lee YS, Naning KW, Nguyen XH, et al. Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita[J]. J Microbiol Biotechnol, 2014, 24(11): 1510-1515.
doi: 10.4014/jmb.1405.05014 URL |
[64] |
Martínez-Servat S, Pinyol-Escala L, Daura-Pich O, et al. Characterization of Lysobacter enzymogenes B25, a potential biological control agent of plant-parasitic nematodes, and its mode of action[J]. AIMS Microbiol, 2023, 9(1): 151-176.
doi: 10.3934/microbiol.2023010 pmid: 36891531 |
[1] | SHI Guang-cheng, YANG Wan-ming, DU Wei-jun, WANG Min. Screening of Salt-tolerant Soybean Germplasm and Physiological Characteristics Analysis of Its Salt Tolerance [J]. Biotechnology Bulletin, 2022, 38(4): 174-183. |
[2] | YOU Ling, ZHOU Rong-qing, TAN Yi, WANG Tao, QIAO Zong-wei, ZHAO Dong. Distribution and Function of Kazachstania Yeast in the Fermentation of Strong Flavor Baijiu [J]. Biotechnology Bulletin, 2021, 37(6): 108-116. |
[3] | CHEN Peng. Rapid Screening Strategy for Target Identification of Bioactive Natural Products [J]. Biotechnology Bulletin, 2020, 36(11): 180-187. |
[4] | LIU Zhen ZHANG, Shu-lin, SHI Ying-hui, PENG Ren-hai. Quantitative and Distribution Characteristics of LTR Retrotransposons in Tetraploid Gossypium barbadense [J]. Biotechnology Bulletin, 2018, 34(5): 124-130. |
[5] | LI Tao, XU Jin, WU Hua-lian, WANG Ming, XIANG Wen-zhou. Effects of Nitrogen Concentration on the Growth,Lipid Accumulation and Fatty Acids Distribution of Oleaginous Chlorococcum sp. [J]. Biotechnology Bulletin, 2018, 34(5): 154-162. |
[6] | XIAO Hai-bing, WANG Peng-jun, LI Xian-feng, DONG Hong-qiang, YANG Ming-lu. Tempo-spatial Distribution of Cry1Ab/c Protein in the Main Stem Leaves of Transgenic Bt Cotton [J]. Biotechnology Bulletin, 2017, 33(12): 108-111. |
[7] | ZHANG Xin-tao ,TANG Hong-ping ,ZHAO Liang ,FAN Li, LIU Xu-ping, MIAO Shi-wei, TAN Wen-song. Effects of Metal Ions on Antibody Production and Charge Heterogeneity in CHO Cell Cultures [J]. Biotechnology Bulletin, 2016, 32(8): 233-241. |
[8] | Cai Lei, Yu Lujun, Chen Xiaoqu, Ye Huixin, Chen Lin, Li Jianjun. A Preliminary Screening and Characteristic Analysis of Microsatellite Markers from Transcriptome Sequences in Mugilogobius chulae [J]. Biotechnology Bulletin, 2015, 31(9): 146-151. |
[9] | Liu Xinxing, Yu Xianghua, Liu Xueduan. Research Progress of Cultivation Technology of Taxus and Its Distribution in China [J]. Biotechnology Bulletin, 2015, 31(7): 51-57. |
[10] | Li Jie, Zhong Jie, Huang Jun, Zhao Xiao, Zhu Hongjian. Progress of Streptomycin-Resistance of Pathogenic Bacteria of Plant [J]. Biotechnology Bulletin, 2013, 0(9): 18-26. |
[11] | Wang Feifei, Wu Kunyi, Guo Ling, Cui Langjun, Ren Jing . Optimization and Construction of the Intracellular and Extracellular Proteomic Map of Lysobacter yanansis sp. nov. [J]. Biotechnology Bulletin, 2013, 0(4): 140-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||