Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 1-15.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0765
Received:
2023-08-09
Online:
2023-12-26
Published:
2024-01-11
Contact:
WANG Yu-kun
E-mail:19881212hong@163.com;wangyu_kun1@163.com
YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants[J]. Biotechnology Bulletin, 2023, 39(12): 1-15.
模式识别受体 Pattern recognition receptor | 物种 Species | 受体类型 Receptor type | 配体 Ligand |
---|---|---|---|
CERK1 | 拟南芥 Arabidopsis thaliana | LysM-RLK | Chitin |
LYK4/5 | 拟南芥 A. thaliana | LysM-RLK | Chitin |
CEBiP | 水稻 Oryza sativa | LysM-RLK | Chitin |
Eix1/2 | 番茄 Lycopersicon esculentum | LRR-RLP | EIX |
RLP42/RBGP1 | 拟南芥 A. thaliana | LRR-RLP | PGs |
FLS2 | 拟南芥 A. thaliana | LRR-RLK | flg22 |
FLS2 | 番茄 L. esculentum | LRR-RLK | flg15 |
FLS3 | 番茄 L. esculentum | LRR-RLK | flgII-28 |
EFR | 拟南芥 A. thaliana | LRR-RLK | elf18 |
LYM1/3 | 拟南芥 A. thaliana | LysM-RLP | PGNs |
LYP4/6 | 水稻 Oryza sativa | LysM-RLP | PGNs |
LORE/SD1-29 | 拟南芥 A. thaliana | LEC-RLK | 3-OH-C10:0 |
NFR1/5 | 百脉根 Lotus japonicus | LysM-RLK | Nod factor |
RLP23 | 拟南芥 A. thaliana | LRR-RLP | nlp20/40 |
RXEG1 | 本氏烟草 Nicotiana benthamiana | LRR-RLP | XEG1 |
PEPRs | 拟南芥 A. thaliana | LRR-RLK | Peps |
WAK/WAKL | 拟南芥 A. thaliana | EGF-like-RLK | OGs |
RLK7 | 拟南芥 A. thaliana | LRR-RLK | PIPs |
FER | 拟南芥 A. thaliana | Malectin-RLK | RALFs |
RLP53 | 拟南芥 A. thaliana | LRR-RLP | 未明确 Unclear |
MRK1 | 番茄 Solanum lycopersicum | LRR-RLK | flg22 |
Table 1 Plant pattern recognition receptors
模式识别受体 Pattern recognition receptor | 物种 Species | 受体类型 Receptor type | 配体 Ligand |
---|---|---|---|
CERK1 | 拟南芥 Arabidopsis thaliana | LysM-RLK | Chitin |
LYK4/5 | 拟南芥 A. thaliana | LysM-RLK | Chitin |
CEBiP | 水稻 Oryza sativa | LysM-RLK | Chitin |
Eix1/2 | 番茄 Lycopersicon esculentum | LRR-RLP | EIX |
RLP42/RBGP1 | 拟南芥 A. thaliana | LRR-RLP | PGs |
FLS2 | 拟南芥 A. thaliana | LRR-RLK | flg22 |
FLS2 | 番茄 L. esculentum | LRR-RLK | flg15 |
FLS3 | 番茄 L. esculentum | LRR-RLK | flgII-28 |
EFR | 拟南芥 A. thaliana | LRR-RLK | elf18 |
LYM1/3 | 拟南芥 A. thaliana | LysM-RLP | PGNs |
LYP4/6 | 水稻 Oryza sativa | LysM-RLP | PGNs |
LORE/SD1-29 | 拟南芥 A. thaliana | LEC-RLK | 3-OH-C10:0 |
NFR1/5 | 百脉根 Lotus japonicus | LysM-RLK | Nod factor |
RLP23 | 拟南芥 A. thaliana | LRR-RLP | nlp20/40 |
RXEG1 | 本氏烟草 Nicotiana benthamiana | LRR-RLP | XEG1 |
PEPRs | 拟南芥 A. thaliana | LRR-RLK | Peps |
WAK/WAKL | 拟南芥 A. thaliana | EGF-like-RLK | OGs |
RLK7 | 拟南芥 A. thaliana | LRR-RLK | PIPs |
FER | 拟南芥 A. thaliana | Malectin-RLK | RALFs |
RLP53 | 拟南芥 A. thaliana | LRR-RLP | 未明确 Unclear |
MRK1 | 番茄 Solanum lycopersicum | LRR-RLK | flg22 |
[1] |
Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393): 186-194.
doi: 10.1038/nature10947 |
[2] |
Saijo Y, Loo EPI. Plant immunity in signal integration between biotic and abiotic stress responses[J]. New Phytol, 2020, 225(1): 87-104.
doi: 10.1111/nph.15989 pmid: 31209880 |
[3] | 吴玉俊, 吴旺泽. 植物模式识别受体与先天免疫[J]. 植物生理学报, 2021, 57(2): 301-312. |
Wu YJ, Wu WZ. Pattern recognition receptors and plant innate immunity[J]. Plant Physiol J, 2021, 57(2): 301-312.
doi: 10.1111/ppl.1983.57.issue-2 URL |
|
[4] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
doi: 10.1038/nature05286 |
[5] |
Yu X, Feng BM, He P, et al. From chaos to harmony: responses and signaling upon microbial pattern recognition[J]. Annu Rev Phytopathol, 2017, 55: 109-137.
doi: 10.1146/annurev-phyto-080516-035649 pmid: 28525309 |
[6] |
Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annu Rev Plant Biol, 2009, 60: 379-406.
doi: 10.1146/annurev.arplant.57.032905.105346 pmid: 19400727 |
[7] |
覃磊, 彭志红, 夏石头. 植物NLR免疫受体的识别、免疫激活与信号调控[J]. 植物学报, 2022, 57(1): 12-23.
doi: 10.11983/CBB21159 |
Qin L, Peng ZH, Xia ST. Recognition, immune activation and signal regulation of plant NLR immune receptor[J]. Chin Bull Bot, 2022, 57(1): 12-23. | |
[8] |
Huang SJ, Jia AL, Ma SC, et al. NLR signaling in plants: from resistosomes to second messengers[J]. Trends Biochem Sci, 2023, 48(9): 776-787.
doi: 10.1016/j.tibs.2023.06.002 pmid: 37394345 |
[9] | 刘艳艳, 丁颖, 郑佳秋, 等. 植物PRRs和NLRs介导的免疫信号通路研究进展[J]. 江苏农业科学, 2023, 51(8): 43-50. |
Liu YY, Ding Y, Zheng JQ, et al. Research progress on PRRs and NLRs mediated immune signaling pathways in plants[J]. Jiangsu Agric Sci, 2023, 51(8): 43-50. | |
[10] |
Macho AP, Zipfel C. Plant PRRs and the activation of innate immune signaling[J]. Mol Cell, 2014, 54(2): 263-272.
doi: 10.1016/j.molcel.2014.03.028 pmid: 24766890 |
[11] |
Wu Y, Zhou JM. Receptor-like kinases in plant innate immunity[J]. J Integr Plant Biol, 2013, 55(12): 1271-1286.
doi: 10.1111/jipb.12123 |
[12] | Shiu SH, Bleecker AB. Plant receptor-like kinase gene family: diversity, function, and signaling[J]. Sci STKE, 2001, 2001(113): re22. |
[13] | Wang GD, Ellendorff U, Kemp B, et al. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis[J]. Plant Physiol, 2008, 147(2): 503-517. |
[14] |
Boutrot F, Zipfel C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance[J]. Annu Rev Phytopathol, 2017, 55: 257-286.
doi: 10.1146/annurev-phyto-080614-120106 pmid: 28617654 |
[15] |
Bjornson M, Pimprikar P, Nürnberger T, et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nat Plants, 2021, 7(5): 579-586.
doi: 10.1038/s41477-021-00874-5 pmid: 33723429 |
[16] |
Yang C, Wang ET, Liu J. CERK1, more than a co-receptor in plant-microbe interactions[J]. New Phytol, 2022, 234(5): 1606-1613.
doi: 10.1111/nph.18074 pmid: 35297054 |
[17] |
Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proc Natl Acad Sci USA, 2006, 103(29): 11086-11091.
doi: 10.1073/pnas.0508882103 pmid: 16829581 |
[18] |
Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2007, 104(49): 19613-19618.
doi: 10.1073/pnas.0705147104 URL |
[19] |
Liu TT, Liu ZX, Song CJ, et al. Chitin-induced dimerization activates a plant immune receptor[J]. Science, 2012, 336(6085): 1160-1164.
doi: 10.1126/science.1218867 pmid: 22654057 |
[20] |
Cao YR, Liang Y, Tanaka K, et al. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1[J]. eLife, 2014, 3: e03766.
doi: 10.7554/eLife.03766 URL |
[21] | Wan JR, Tanaka K, Zhang XC, et al. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis[J]. Plant Physiol, 2012, 160(1): 396-406. |
[22] |
Xue DX, Li CL, Xie ZP, et al. LYK4 is a component of a tripartite chitin receptor complex in Arabidopsis thaliana[J]. J Exp Bot, 2019, 70(19): 5507-5516.
doi: 10.1093/jxb/erz313 URL |
[23] |
Gubaeva E, Gubaev A, Melcher RLJ, et al. ‘slipped sandwich’ model for chitin and chitosan perception in Arabidopsis[J]. Mol Plant Microbe Interact, 2018, 31(11): 1145-1153.
doi: 10.1094/MPMI-04-18-0098-R URL |
[24] |
Felix G, Regenass M, Boller T. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state[J]. Plant J, 1993, 4(2): 307-316.
doi: 10.1046/j.1365-313X.1993.04020307.x URL |
[25] |
Gao F, Zhang BS, Zhao JH, et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens[J]. Nat Plants, 2019, 5(11): 1167-1176.
doi: 10.1038/s41477-019-0527-4 pmid: 31636399 |
[26] |
Liu SM, Wang JZ, Han ZF, et al. Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP[J]. Structure, 2016, 24(7): 1192-1200.
doi: 10.1016/j.str.2016.04.014 pmid: 27238968 |
[27] |
Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. Plant J, 2010, 64(2): 204-214.
doi: 10.1111/tpj.2010.64.issue-2 URL |
[28] | Hayafune M, Berisio R, Marchetti R, et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization[J]. Proc Natl Acad Sci USA, 2014, 111(3): E404-E413. |
[29] |
Liu B, Li JF, Ao Y, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J]. Plant Cell, 2012, 24(8): 3406-3419.
doi: 10.1105/tpc.112.102475 URL |
[30] |
Poinssot B, Vandelle E, Bentéjac M, et al. The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity[J]. Mol Plant Microbe Interact, 2003, 16(6): 553-564.
doi: 10.1094/MPMI.2003.16.6.553 URL |
[31] |
Zhang LS, Kars I, Essenstam B, et al. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1[J]. Plant Physiol, 2014, 164(1): 352-364.
doi: 10.1104/pp.113.230698 URL |
[32] |
Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato[J]. Plant Cell, 2004, 16(6): 1604-1615.
doi: 10.1105/tpc.022475 pmid: 15155877 |
[33] |
Bar M, Sharfman M, Ron M, et al. BAK1 is required for the attenuation of ethylene-inducing xylanase(Eix)-induced defense responses by the decoy receptor LeEix1[J]. Plant J, 2010, 63(5): 791-800.
doi: 10.1111/tpj.2010.63.issue-5 URL |
[34] |
Bauer Z, Gómez-Gómez L, Boller T, et al. Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites[J]. J Biol Chem, 2001, 276(49): 45669-45676.
doi: 10.1074/jbc.M102390200 pmid: 11564731 |
[35] |
Chinchilla D, Bauer Z, Regenass M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2): 465-476.
doi: 10.1105/tpc.105.036574 pmid: 16377758 |
[36] |
Meindl T, Boller T, Felix G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept[J]. Plant Cell, 2000, 12(9): 1783-1794.
doi: 10.1105/tpc.12.9.1783 pmid: 11006347 |
[37] |
Robatzek S, Bittel P, Chinchilla D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Mol Biol, 2007, 64(5): 539-547.
doi: 10.1007/s11103-007-9173-8 pmid: 17530419 |
[38] |
Hind SR, Strickler SR, Boyle PC, et al. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system[J]. Nat Plants, 2016, 2: 16128.
doi: 10.1038/nplants.2016.128 pmid: 27548463 |
[39] |
Sun YD, Li L, Macho AP, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158): 624-628.
doi: 10.1126/science.1243825 URL |
[40] |
Buscaill P, Chandrasekar B, Sanguankiattichai N, et al. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides[J]. Science, 2019, 364(6436): eaav0748.
doi: 10.1126/science.aav0748 URL |
[41] |
Yamamoto M, Ohnishi-Kameyama M, Nguyen CL, et al. Identification of genes involved in the glycosylation of modified viosamine of flagellins in Pseudomonas syringae by mass spectrometry[J]. Genes, 2011, 2(4): 788-803.
doi: 10.3390/genes2040788 URL |
[42] |
Kunze G, Zipfel C, Robatzek S, et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants[J]. Plant Cell, 2004, 16(12): 3496-3507.
doi: 10.1105/tpc.104.026765 URL |
[43] |
Zipfel C, Kunze G, Chinchilla D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4): 749-760.
doi: 10.1016/j.cell.2006.03.037 pmid: 16713565 |
[44] |
Danna CH, Millet YA, Koller T, et al. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides[J]. Proc Natl Acad Sci USA, 2011, 108(22): 9286-9291.
doi: 10.1073/pnas.1106366108 URL |
[45] |
Willmann R, Lajunen HM, Erbs G, et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19824-19829.
doi: 10.1073/pnas.1112862108 pmid: 22106285 |
[46] |
Zhang XC, Cannon SB, Stacey G. Evolutionary genomics of LysM genes in land plants[J]. BMC Evol Biol, 2009, 9: 183.
doi: 10.1186/1471-2148-9-183 URL |
[47] |
Iizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro[J]. J Biol Chem, 2010, 285(5): 2996-3004.
doi: 10.1074/jbc.M109.027540 URL |
[48] |
Petutschnig EK, Jones AME, Serazetdinova L, et al. The lysin motif receptor-like kinase(LysM-RLK)CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation[J]. J Biol Chem, 2010, 285(37): 28902-28911.
doi: 10.1074/jbc.M110.116657 pmid: 20610395 |
[49] |
Madsen EB, Madsen LH, Radutoiu S, et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals[J]. Nature, 2003, 425(6958): 637-640.
doi: 10.1038/nature02045 |
[50] |
Broghammer A, Krusell L, Blaise M, et al. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding[J]. Proc Natl Acad Sci USA, 2012, 109(34): 13859-13864.
doi: 10.1073/pnas.1205171109 pmid: 22859506 |
[51] |
Kawaharada Y, Kelly S, Nielsen MW, et al. Receptor-mediated exopolysaccharide perception controls bacterial infection[J]. Nature, 2015, 523(7560): 308-312.
doi: 10.1038/nature14611 |
[52] |
Bozsoki Z, Gysel K, Hansen SB, et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity[J]. Science, 2020, 369(6504): 663-670.
doi: 10.1126/science.abb3377 pmid: 32764065 |
[53] |
Luo XM, Wu W, Liang YB, et al. Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity[J]. EMBO J, 2020, 39(4): e102856.
doi: 10.15252/embj.2019102856 URL |
[54] |
Raaymakers TM, Van den Ackerveken G. Extracellular recognition of oomycetes during biotrophic infection of plants[J]. Front Plant Sci, 2016, 7: 906.
doi: 10.3389/fpls.2016.00906 pmid: 27446136 |
[55] |
Böhm H, Albert I, Oome S, et al. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis[J]. PLoS Pathog, 2014, 10(11): e1004491.
doi: 10.1371/journal.ppat.1004491 URL |
[56] |
Oome S, Raaymakers TM, Cabral A, et al. Nep1-like proteins from three Kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis[J]. Proc Natl Acad Sci USA, 2014, 111(47): 16955-16960.
doi: 10.1073/pnas.1410031111 URL |
[57] |
Albert I, Böhm H, Albert M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nat Plants, 2015, 1: 15140.
doi: 10.1038/nplants.2015.140 pmid: 27251392 |
[58] |
Sun Y, Wang Y, Zhang XX, et al. Plant receptor-like protein activation by a microbial glycoside hydrolase[J]. Nature, 2022, 610(7931): 335-342.
doi: 10.1038/s41586-022-05214-x |
[59] |
Du J, Verzaux E, Chaparro-Garcia A, et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato[J]. Nat Plants, 2015, 1(4): 15034.
doi: 10.1038/nplants.2015.34 |
[60] |
Peng KC, Wang CW, Wu CH, et al. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica[J]. Mol Plant Microbe Interact, 2015, 28(8): 913-926.
doi: 10.1094/MPMI-12-14-0405-R URL |
[61] |
Gust AA, Pruitt R, Nürnberger T. Sensing danger: key to activating plant immunity[J]. Trends Plant Sci, 2017, 22(9): 779-791.
doi: S1360-1385(17)30155-3 pmid: 28779900 |
[62] |
Choi HW, Manohar M, Manosalva P, et al. Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid[J]. PLoS Pathog, 2016, 12(3): e1005518.
doi: 10.1371/journal.ppat.1005518 URL |
[63] | Lotze MT, Tracey KJ. High-mobility group box 1 protein(HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5(4): 331-342. |
[64] |
Choi J, Tanaka K, Cao YR, et al. Identification of a plant receptor for extracellular ATP[J]. Science, 2014, 343(6168): 290-294.
doi: 10.1126/science.343.6168.290 pmid: 24436418 |
[65] |
Li ZJ, Chakraborty S, Xu GZ. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa[J]. Acta Crystallogr F Struct Biol Commun, 2016, 72(Pt 10): 782-787.
doi: 10.1107/S2053230X16014278 URL |
[66] |
Bergey DR, Orozco-Cardenas M, de Moura DS, et al. A wound- and systemin-inducible polygalacturonase in tomato leaves[J]. Proc Natl Acad Sci USA, 1999, 96(4): 1756-1760.
doi: 10.1073/pnas.96.4.1756 pmid: 9990097 |
[67] |
Brutus A, Sicilia F, Macone A, et al. A domain swap approach reveals a role of the plant wall-associated kinase 1(WAK1)as a receptor of oligogalacturonides[J]. Proc Natl Acad Sci USA, 2010, 107(20): 9452-9457.
doi: 10.1073/pnas.1000675107 URL |
[68] |
Denoux C, Galletti R, Mammarella N, et al. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings[J]. Mol Plant, 2008, 1(3): 423-445.
doi: 10.1093/mp/ssn019 URL |
[69] |
Ferrari S, Savatin DV, Sicilia F, et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development[J]. Front Plant Sci, 2013, 4: 49.
doi: 10.3389/fpls.2013.00049 pmid: 23493833 |
[70] |
Gravino M, Locci F, Tundo S, et al. Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2[J]. Mol Plant Pathol, 2017, 18(4): 582-595.
doi: 10.1111/mpp.12419 pmid: 27118426 |
[71] |
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions[J]. Plant J, 2018, 93(4): 592-613.
doi: 10.1111/tpj.2018.93.issue-4 URL |
[72] |
Beloshistov RE, Dreizler K, Galiullina RA, et al. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin[J]. New Phytol, 2018, 218(3): 1167-1178.
doi: 10.1111/nph.14568 pmid: 28407256 |
[73] |
Pearce G, Bhattacharya R, Chen YC, et al. Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves[J]. Plant Physiol, 2009, 150(3): 1422-1433.
doi: 10.1104/pp.109.138669 pmid: 19403725 |
[74] |
Hou SG, Wang X, Chen DH, et al. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7[J]. PLoS Pathog, 2014, 10(9): e1004331.
doi: 10.1371/journal.ppat.1004331 URL |
[75] |
Stegmann M, Monaghan J, Smakowska-Luzan E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322): 287-289.
doi: 10.1126/science.aal2541 pmid: 28104890 |
[76] |
Krol E, Mentzel T, Chinchilla D, et al. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2[J]. J Biol Chem, 2010, 285(18): 13471-13479.
doi: 10.1074/jbc.M109.097394 URL |
[77] |
Yamaguchi Y, Huffaker A, Bryan AC, et al. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis[J]. Plant Cell, 2010, 22(2): 508-522.
doi: 10.1105/tpc.109.068874 URL |
[78] |
Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells[J]. Proc Natl Acad Sci USA, 2006, 103(26): 10104-10109.
pmid: 16785433 |
[79] |
Tang J, Han ZF, Sun YD, et al. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1[J]. Cell Res, 2015, 25(1): 110-120.
doi: 10.1038/cr.2014.161 pmid: 25475059 |
[80] |
Huffaker A. Plant elicitor peptides in induced defense against insects[J]. Curr Opin Insect Sci, 2015, 9: 44-50.
doi: S2214-5745(15)00096-6 pmid: 32846707 |
[81] |
Ranf S, Eschen-Lippold L, Pecher P, et al. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns[J]. Plant J, 2011, 68(1): 100-113.
doi: 10.1111/tpj.2011.68.issue-1 URL |
[82] |
Kwaaitaal M, Huisman R, Maintz J, et al. Ionotropic glutamate receptor(iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana[J]. Biochem J, 2011, 440(3): 355-365.
doi: 10.1042/BJ20111112 pmid: 21848515 |
[83] |
Seybold H, Trempel F, Ranf S, et al. Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms[J]. New Phytol, 2014, 204(4): 782-790.
pmid: 25539002 |
[84] |
Jogawat A, Meena MK, Kundu A, et al. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots[J]. J Exp Bot, 2020, 71(9): 2752-2768.
doi: 10.1093/jxb/eraa028 URL |
[85] |
Thor K, Jiang SS, Michard E, et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity[J]. Nature, 2020, 585(7826): 569-573.
doi: 10.1038/s41586-020-2702-1 |
[86] |
Frei dit Frey N, Mbengue M, Kwaaitaal M, et al. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development[J]. Plant Physiol, 2012, 159(2): 798-809.
doi: 10.1104/pp.111.192575 pmid: 22535420 |
[87] |
Yu HY, Yan JP, Du XG, et al. Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses[J]. J Exp Bot, 2018, 69(10): 2693-2703.
doi: 10.1093/jxb/ery073 URL |
[88] |
Hilleary R, Paez-Valencia J, Vens C, et al. Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2020, 117(31): 18849-18857.
doi: 10.1073/pnas.2004183117 pmid: 32690691 |
[89] |
Jeworutzki E, Anschütz U, et al. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels[J]. Plant J, 2010, 62(3): 367-378.
doi: 10.1111/tpj.2010.62.issue-3 URL |
[90] |
Pugin A, Frachisse JM, Tavernier E, et al. Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway[J]. Plant Cell, 1997, 9(11): 2077-2091.
doi: 10.2307/3870566 URL |
[91] |
Elmore JM, Coaker G. The role of the plasma membrane H+-ATPase in plant-microbe interactions[J]. Mol Plant, 2011, 4(3): 416-427.
doi: 10.1093/mp/ssq083 pmid: 21300757 |
[92] |
Haruta M, Monshausen G, Gilroy S, et al. A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide[J]. Biochemistry, 2008, 47(24): 6311-6321.
doi: 10.1021/bi8001488 URL |
[93] |
Pearce G, Moura DS, Stratmann J, et al. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development[J]. Proc Natl Acad Sci USA, 2001, 98(22): 12843-12847.
pmid: 11675511 |
[94] |
Liu J, Elmore JM, Fuglsang AT, et al. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack[J]. PLoS Biol, 2009, 7(6): e1000139.
doi: 10.1371/journal.pbio.1000139 URL |
[95] |
Lee D, Bourdais G, Yu G, et al. Phosphorylation of the plant immune regulator RPM1-INTERACTING PROTEIN4 enhances plant plasma membrane H+-ATPase activity and inhibits flagellin-triggered immune responses in Arabidopsis[J]. Plant Cell, 2015, 27(7): 2042-2056.
doi: 10.1105/tpc.114.132308 URL |
[96] |
Bindschedler LV, Dewdney J, Blee KA, et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance[J]. Plant J, 2006, 47(6): 851-863.
doi: 10.1111/j.1365-313X.2006.02837.x pmid: 16889645 |
[97] |
Daudi A, Cheng ZY, O’Brien JA, et al. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity[J]. Plant Cell, 2012, 24(1): 275-287.
doi: 10.1105/tpc.111.093039 URL |
[98] |
Nühse TS, Bottrill AR, Jones AME, et al. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses[J]. Plant J, 2007, 51(5): 931-940.
doi: 10.1111/j.1365-313X.2007.03192.x pmid: 17651370 |
[99] |
Torres MA, Jones JDG, Dangl JL. Reactive oxygen species signaling in response to pathogens[J]. Plant Physiol, 2006, 141(2): 373-378.
doi: 10.1104/pp.106.079467 pmid: 16760490 |
[100] |
Arnaud D, Lee S, Takebayashi Y, et al. Cytokinin-mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in Arabidopsis[J]. Plant Cell, 2017, 29(3): 543-559.
doi: 10.1105/tpc.16.00583 URL |
[101] |
Boudsocq M, Willmann MR, McCormack M, et al. Differential innate immune signalling via Ca2+ sensor protein kinases[J]. Nature, 2010, 464(7287): 418-422.
doi: 10.1038/nature08794 |
[102] |
Dubiella U, Seybold H, Durian G, et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation[J]. Proc Natl Acad Sci USA, 2013, 110(21): 8744-8749.
doi: 10.1073/pnas.1221294110 pmid: 23650383 |
[103] |
Kadota Y, Sklenar J, Derbyshire P, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Mol Cell, 2014, 54(1): 43-55.
doi: S1097-2765(14)00166-X pmid: 24630626 |
[104] |
Li L, Li M, Yu LP, et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity[J]. Cell Host Microbe, 2014, 15(3): 329-338.
doi: 10.1016/j.chom.2014.02.009 pmid: 24629339 |
[105] |
Ogasawara Y, Kaya H, Hiraoka G, et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation[J]. J Biol Chem, 2008, 283(14): 8885-8892.
doi: 10.1074/jbc.M708106200 pmid: 18218618 |
[106] | Lin ZJ D, Liebrand TWH, Yadeta KA, et al. PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses[J]. Plant Physiol, 2015, 169(4): 2950-2962. |
[107] |
Monaghan J, Matschi S, Shorinola O, et al. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover[J]. Cell Host Microbe, 2014, 16(5): 605-615.
doi: 10.1016/j.chom.2014.10.007 pmid: 25525792 |
[108] |
Akamatsu A, Wong HL, Fujiwara M, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host Microbe, 2013, 13(4): 465-476.
doi: 10.1016/j.chom.2013.03.007 pmid: 23601108 |
[109] |
Ono E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2001, 98(2): 759-764.
doi: 10.1073/pnas.98.2.759 pmid: 11149940 |
[110] |
Oda T, Hashimoto H, Kuwabara N, et al. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications[J]. J Biol Chem, 2010, 285(2): 1435-1445.
doi: 10.1074/jbc.M109.058909 pmid: 19864426 |
[111] |
Wong HL, Pinontoan R, Hayashi K, et al. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension[J]. Plant Cell, 2007, 19(12): 4022-4034.
doi: 10.1105/tpc.107.055624 pmid: 18156215 |
[112] |
Shinya T, Yamaguchi K, Desaki Y, et al. Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27[J]. Plant J, 2014, 79(1): 56-66.
doi: 10.1111/tpj.2014.79.issue-1 URL |
[113] |
Yamada K, Yamaguchi K, Shirakawa T, et al. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation[J]. EMBO J, 2016, 35(22): 2468-2483.
pmid: 27679653 |
[114] |
Liu YD, Zhang SQ. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis[J]. Plant Cell, 2004, 16(12): 3386-3399.
doi: 10.1105/tpc.104.026609 URL |
[115] |
Djamei A, Pitzschke A, Nakagami H, et al. Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling[J]. Science, 2007, 318(5849): 453-456.
doi: 10.1126/science.1148110 pmid: 17947581 |
[116] |
Bethke G, Unthan T, Uhrig JF, et al. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling[J]. Proc Natl Acad Sci USA, 2009, 106(19): 8067-8072.
doi: 10.1073/pnas.0810206106 pmid: 19416906 |
[117] |
Ishihama N, Yamada R, Yoshioka M, et al. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response[J]. Plant Cell, 2011, 23(3): 1153-1170.
doi: 10.1105/tpc.110.081794 URL |
[118] |
Mao GH, Meng XZ, Liu YD, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. Plant Cell, 2011, 23(4): 1639-1653.
doi: 10.1105/tpc.111.084996 URL |
[119] | Kang SN, Yang F, Li L, et al. The Arabidopsis transcription factor brassinosteroid insensitive1-ethyl methanesulfonate-suppressor1 is a direct substrate of mitogen-activated protein kinase6 and regulates immunity[J]. Plant Physiol, 2015, 167(3): 1076-1086. |
[120] |
Pecher P, Eschen-Lippold L, Herklotz S, et al. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ-motif’-containing proteins to regulate immune responses[J]. New Phytol, 2014, 203(2): 592-606.
doi: 10.1111/nph.2014.203.issue-2 URL |
[121] |
Li FJ, Cheng C, Cui FH, et al. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity[J]. Cell Host Microbe, 2014, 16(6): 748-758.
doi: 10.1016/j.chom.2014.10.018 pmid: 25464831 |
[122] |
Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, et al. The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses[J]. Plant Cell Physiol, 2014, 55(2): 412-425.
doi: 10.1093/pcp/pct175 pmid: 24285750 |
[123] |
Roux M, Schwessinger B, Albrecht C, et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. Plant Cell, 2011, 23(6): 2440-2455.
doi: 10.1105/tpc.111.084301 URL |
[124] |
Furlan G, Nakagami H, Eschen-Lippold L, et al. Changes in PUB22 ubiquitination modes triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 dampen the immune response[J]. Plant Cell, 2017, 29(4): 726-745.
doi: 10.1105/tpc.16.00654 URL |
[125] |
Li B, Jiang S, Yu X, et al. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity[J]. Plant Cell, 2015, 27(3): 839-856.
doi: 10.1105/tpc.114.134809 URL |
[126] |
Wang C, Wang G, Zhang C, et al. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice[J]. Mol Plant, 2017, 10(4): 619-633.
doi: S1674-2052(17)30007-2 pmid: 28111288 |
[127] |
Yamada K, Yamaguchi K, Yoshimura S, et al. Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis[J]. Plant Cell Physiol, 2017, 58(6): 993-1002.
doi: 10.1093/pcp/pcx042 pmid: 28371870 |
[128] |
Franck CM, Westermann J, Boisson-Dernier A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond[J]. Annu Rev Plant Biol, 2018, 69: 301-328.
doi: 10.1146/annurev-arplant-042817-040557 pmid: 29539271 |
[129] |
Julkowska MM, Koevoets IT, Mol S, et al. Genetic components of root architecture remodeling in response to salt stress[J]. Plant Cell, 2017, 29(12): 3198-3213.
doi: 10.1105/tpc.16.00680 URL |
[130] |
Van der Does D, Boutrot F, Engelsdorf T, et al. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses[J]. PLoS Genet, 2017, 13(6): e1006832.
doi: 10.1371/journal.pgen.1006832 URL |
[131] | Chen J, Yu F, Liu Y, et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis[J]. Proc Natl Acad Sci USA, 2016, 113(37): E5519-E5527. |
[132] |
Yamada K, Yamashita-Yamada M, Hirase T, et al. Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1[J]. EMBO J, 2016, 35(1): 46-61.
doi: 10.15252/embj.201591807 pmid: 26574534 |
[133] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants[J]. Proc Natl Acad Sci USA, 2018, 115(22): 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[134] |
Loo EPI, Tajima Y, Yamada K, et al. Recognition of microbe- and damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants[J]. Mol Plant Microbe Interact, 2022, 35(7): 554-566.
doi: 10.1094/MPMI-07-21-0185-FI URL |
[135] |
Espinoza C, Liang Y, Stacey G. Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis[J]. Plant J, 2017, 89(5): 984-995.
doi: 10.1111/tpj.2017.89.issue-5 URL |
[136] |
Chen RJ, Sun PW, Zhong GT, et al. The RECEPTOR-LIKE PROTEIN53 immune complex associates with LLG1 to positively regulate plant immunity[J]. J Integr Plant Biol, 2022, 64(9): 1833-1846.
doi: 10.1111/jipb.13327 |
[137] |
Ma QM, Hu ZJ, Mao Z, et al. Correction: the novel leucine-rich repeat receptor-like kinase MRK1 regulates resistance to multiple stresses in tomato[J]. Hortic Res, 2022, 9: uhac149.
doi: 10.1093/hr/uhac149 URL |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[3] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[4] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[8] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[9] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[10] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[11] | CHENG Shuang, ULAANDUU Namuun, LI Zhuo-lin, HU Hai-ling, DENG Xiao-xia, LI Yue-ming, WANG Jing-hong, LIN Ji-xiang. Research Progress in the Mechanism of Plant Photosystem II(PSII)Responsing to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(12): 33-42. |
[12] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[13] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[14] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[15] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||