Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 43-55.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0648
Previous Articles Next Articles
LI Hai-ning1,2(), ZHANG Hong-bing1(), GENG Ge-xia3, LI Ran2, JIA Zhen-hua2
Received:
2023-07-07
Online:
2023-12-26
Published:
2024-01-11
Contact:
ZHANG Hong-bing
E-mail:1187828448@qq.com;zhanghb@hueb.edu.cn
LI Hai-ning, ZHANG Hong-bing, GENG Ge-xia, LI Ran, JIA Zhen-hua. Application and Biosynthesis Strategies of Unnatural Amino Acids[J]. Biotechnology Bulletin, 2023, 39(12): 43-55.
非天然氨基酸 UAA | 结构 Structure | 合成方式 Method of synthesis | 应用 Application | 使用方式 Mode of use | 参考文献 Reference |
---|---|---|---|---|---|
L-苯甘氨酸 L-phenylghycine | 化学合成 Chemical synthesis | 合成紫杉醇及β-内酰胺类抗生素重要中间体 Important intermediates for the synthesis of paclitaxel and β-lactam antibiotics | 药物中间体 Pharmaceutical intermediates | [ | |
(S)-2-环丙基甘氨酸(S)-2-cyclopropylglycine | 化学合成、生物合成 Chemical synthesis and biosynthesis | 设计酶抑制剂(大环饥饿激素受体拮抗剂)抗菌、抗癌、止痛等Design enzyme inhibitor(macrocyclic starvation hormone receptor antagonist)for antibacteria, anticancer, analgesic, etc | 多肽类似物、药物中间体Peptide analogues,pharmaceutical intermediates | [ | |
L-2-氨基丁酸 L-2-aminobutyric acid | 生物合成 Biosynthesis | 重磅级抗癫痫药物左乙拉西坦、布瓦西坦和抗结核乙胺丁醇等关键中间体 Key intermediate for heavyweight anti-epileptic drugs levetiracetam, bupropion and anti-tuberculosis ethambutol | 药物中间体 Pharmaceutical intermediates | [ | |
N-乙酰-L-苯丙氨酸N-acetyl-L-phenylalanine | 化学合成 Chemical synthesis | 定点偶联单克隆抗体,杀死肿瘤细胞 Targeted coupling of monoclonal antibodies to kill tumor cells | 抗体药物偶联物 Antibody-drug conjugates | [ | |
γ-氨基丁酸 γ-aminobutyric acid | 生物合成 Biosynthesis | 神经递质的一种,脑内抑制性递质、镇静神经、抗焦虑、降血压A kind of neurotransmitter, inhibitory transmitter in the brain, calming nerve, anti-anxiety, lowering blood pressure | 游离氨基酸 Free amino acids | [ | |
5-氨基乙酰丙酸 5-aminolevulinic acid | 生物合成 Biosynthesis | 血红素、卟啉、叶绿素、维生素B12重要前体,具有生物可降解、无毒无残留优点 Important precursors of heme, porphyrin, chlorophyll and vitamin B12, with biodegradable, non-toxic and non-residual advantages | 游离氨基酸 Free amino acids | [ | |
L-2,3-二氨基丙酸 L-2,3-diaminopropionic acid | 化学合成 Chemical synthesis | 神经毒素的直接前体,多种抗生素合成的关键物质Direct precursor of neurotoxin, and key substance for the synthesis of many antibiotics | 活性药物成分 Active pharmaceutical ingredients | [ | |
4-氟脯氨酸 4-fluoroproline | 化学合成 Chemical synthesis | 应用于蛋白质设计与工程,增强蛋白质构象稳定性 Application to protein design and engineering for enhancing protein conformational stability | 插入蛋白质 Insertion of proteins | [ | |
N-乙酰化氟苯丙氨酸N-acetylated fluorophenylalanine | 化学合成 Chemical synthesis | 抗病毒、抗癌药物结合物 Anti-viral and anti-cancer drug conjugates | 抗体药物偶联物 Antibody-drug conjugates | [ | |
4-羟基苯基甘氨酸 4-hydroxy-phenylglycine | 化学合成 Chemical synthesis | 合成治疗心肌梗死药物 Synthetic drugs for myocardial infarction | 游离氨基酸 Free amino acids | [ |
Table 1 Applications of unnatural amino acids
非天然氨基酸 UAA | 结构 Structure | 合成方式 Method of synthesis | 应用 Application | 使用方式 Mode of use | 参考文献 Reference |
---|---|---|---|---|---|
L-苯甘氨酸 L-phenylghycine | 化学合成 Chemical synthesis | 合成紫杉醇及β-内酰胺类抗生素重要中间体 Important intermediates for the synthesis of paclitaxel and β-lactam antibiotics | 药物中间体 Pharmaceutical intermediates | [ | |
(S)-2-环丙基甘氨酸(S)-2-cyclopropylglycine | 化学合成、生物合成 Chemical synthesis and biosynthesis | 设计酶抑制剂(大环饥饿激素受体拮抗剂)抗菌、抗癌、止痛等Design enzyme inhibitor(macrocyclic starvation hormone receptor antagonist)for antibacteria, anticancer, analgesic, etc | 多肽类似物、药物中间体Peptide analogues,pharmaceutical intermediates | [ | |
L-2-氨基丁酸 L-2-aminobutyric acid | 生物合成 Biosynthesis | 重磅级抗癫痫药物左乙拉西坦、布瓦西坦和抗结核乙胺丁醇等关键中间体 Key intermediate for heavyweight anti-epileptic drugs levetiracetam, bupropion and anti-tuberculosis ethambutol | 药物中间体 Pharmaceutical intermediates | [ | |
N-乙酰-L-苯丙氨酸N-acetyl-L-phenylalanine | 化学合成 Chemical synthesis | 定点偶联单克隆抗体,杀死肿瘤细胞 Targeted coupling of monoclonal antibodies to kill tumor cells | 抗体药物偶联物 Antibody-drug conjugates | [ | |
γ-氨基丁酸 γ-aminobutyric acid | 生物合成 Biosynthesis | 神经递质的一种,脑内抑制性递质、镇静神经、抗焦虑、降血压A kind of neurotransmitter, inhibitory transmitter in the brain, calming nerve, anti-anxiety, lowering blood pressure | 游离氨基酸 Free amino acids | [ | |
5-氨基乙酰丙酸 5-aminolevulinic acid | 生物合成 Biosynthesis | 血红素、卟啉、叶绿素、维生素B12重要前体,具有生物可降解、无毒无残留优点 Important precursors of heme, porphyrin, chlorophyll and vitamin B12, with biodegradable, non-toxic and non-residual advantages | 游离氨基酸 Free amino acids | [ | |
L-2,3-二氨基丙酸 L-2,3-diaminopropionic acid | 化学合成 Chemical synthesis | 神经毒素的直接前体,多种抗生素合成的关键物质Direct precursor of neurotoxin, and key substance for the synthesis of many antibiotics | 活性药物成分 Active pharmaceutical ingredients | [ | |
4-氟脯氨酸 4-fluoroproline | 化学合成 Chemical synthesis | 应用于蛋白质设计与工程,增强蛋白质构象稳定性 Application to protein design and engineering for enhancing protein conformational stability | 插入蛋白质 Insertion of proteins | [ | |
N-乙酰化氟苯丙氨酸N-acetylated fluorophenylalanine | 化学合成 Chemical synthesis | 抗病毒、抗癌药物结合物 Anti-viral and anti-cancer drug conjugates | 抗体药物偶联物 Antibody-drug conjugates | [ | |
4-羟基苯基甘氨酸 4-hydroxy-phenylglycine | 化学合成 Chemical synthesis | 合成治疗心肌梗死药物 Synthetic drugs for myocardial infarction | 游离氨基酸 Free amino acids | [ |
非天然氨基酸 UAA | 生产菌株Strain | 改造策略 Modifying strategies | 发酵方式 Fermentation method | 产量 Titer/(g·L-1) | 参考文献 Reference |
---|---|---|---|---|---|
5-ALA | E. coli E. coli C. glutamicum C. glutamicum | 过表达ALAS,敲除ldhA、sdhA iclR,下调hemB Overexpression of ALAS, deletion of ldhA, sdhA and iclR, downregulation of hemB 过表达KatE和SodB 强化抗氧化防御系统 Reinforcing the antioxidant defense system by expression KatE and SodB 过表达rhtA,敲除sucCD Overexpression of rhtA, and deletion of sucCD 过表达ppc Overexpression of ppc | 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask 分批补料 Fed-batch 分批补料 Fed-batch | 6.93 11.50 14.70 16.30 | [ [ [ [ |
4-HIL | C. glutamicum C. glutamicum E. coli | 过表达双加氧酶基因ido和ppc基因 Overexpression of double oxygenase gene ido and ppc 整合Lys-OFF核糖开关到dapA上游,并利用Ile激活型传感器Lrp-PbrnFEN控制ido表达,利用强启动子PbrnFE7动态控制odh I和vgb表达 Integrate the Lys-OFF riboswitch to the upstream of dapA and control ido expression using the Ile-activated sensor Lrp-PbrnFEN and dynamically control odh I and vgb expression using the strong promoter PbrnFE7 敲除α-酮戊二酸脱氢酶基因sucAB,及异柠檬酸脱氢酶激酶基因aceAK Deletion of sucAB 和aceAK | 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask | 14.10 24.40 24.10 | [ [ [ |
L-ABA | E. coli E. coli | 突变ilvA基因从而减弱ilvA受到的反馈抑制 Mutating the ilvA gene, and downregulating the feedback inhibition of ilvA 引入定点饱和突变的苏氨酸脱氨酶分子,敲除ilvH基因,对苏氨酸脱氨酶和亮氨酸脱氢酶进行协同表达调控 Introduction of a fixed-point saturated and mutated threonine deaminase molecule, deletion of the ilvH gene, and co-expression regulation of threonine deaminase and leucine dehydrogenase | 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask | 5.39 4.86 | [ [ |
L-HS | E. coli E. coli E. coli | 过表达高丝氨酸脱氢酶 I基因thrA Overexpression of thrA 过表达高丝氨酸脱氢酶II基因metL Overexpression metL 过表达高丝氨酸外排蛋白编码基因rhtA及敲除tdcC基因 Overexpression of rhtA and deletion of tdcC | 分批补料 Fed-batch 分批补料 Fed-batch 分批补料 Fed-batch | 1.20 1.04 39.50 | [ [ [ |
Trans-4-hydroxy-L-proline | E. coli | 引入T7 RNA聚合酶,敲除L-脯氨酸基因putA,整合L-脯氨酸-4-羟基化酶基因 Introduction of T7 RNA polymerase, deletion of putA and integration of the L-proline-4-hydroxylase gene | 分批补料 Fed-batch | 48.60 | [ |
5-HTP | E. coli | 定向进化XcP4H与辅酶MH4再生系统共表达 Directed evolution of XcP4H co-expressed with the auxin MH4 regeneration system | 摇瓶发酵 Shake flask | 1.11 | [ |
L-DOPA | E. coli | 用半乳糖渗透酶基因galP和葡萄糖激酶基因glk替代PTS功能 Replacement of PTS function with galP and glk | 分批补料 Fed-batch | 1.51 | [ |
Table 2 Biosynthesis of UAAs
非天然氨基酸 UAA | 生产菌株Strain | 改造策略 Modifying strategies | 发酵方式 Fermentation method | 产量 Titer/(g·L-1) | 参考文献 Reference |
---|---|---|---|---|---|
5-ALA | E. coli E. coli C. glutamicum C. glutamicum | 过表达ALAS,敲除ldhA、sdhA iclR,下调hemB Overexpression of ALAS, deletion of ldhA, sdhA and iclR, downregulation of hemB 过表达KatE和SodB 强化抗氧化防御系统 Reinforcing the antioxidant defense system by expression KatE and SodB 过表达rhtA,敲除sucCD Overexpression of rhtA, and deletion of sucCD 过表达ppc Overexpression of ppc | 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask 分批补料 Fed-batch 分批补料 Fed-batch | 6.93 11.50 14.70 16.30 | [ [ [ [ |
4-HIL | C. glutamicum C. glutamicum E. coli | 过表达双加氧酶基因ido和ppc基因 Overexpression of double oxygenase gene ido and ppc 整合Lys-OFF核糖开关到dapA上游,并利用Ile激活型传感器Lrp-PbrnFEN控制ido表达,利用强启动子PbrnFE7动态控制odh I和vgb表达 Integrate the Lys-OFF riboswitch to the upstream of dapA and control ido expression using the Ile-activated sensor Lrp-PbrnFEN and dynamically control odh I and vgb expression using the strong promoter PbrnFE7 敲除α-酮戊二酸脱氢酶基因sucAB,及异柠檬酸脱氢酶激酶基因aceAK Deletion of sucAB 和aceAK | 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask | 14.10 24.40 24.10 | [ [ [ |
L-ABA | E. coli E. coli | 突变ilvA基因从而减弱ilvA受到的反馈抑制 Mutating the ilvA gene, and downregulating the feedback inhibition of ilvA 引入定点饱和突变的苏氨酸脱氨酶分子,敲除ilvH基因,对苏氨酸脱氨酶和亮氨酸脱氢酶进行协同表达调控 Introduction of a fixed-point saturated and mutated threonine deaminase molecule, deletion of the ilvH gene, and co-expression regulation of threonine deaminase and leucine dehydrogenase | 摇瓶发酵 Shake flask 摇瓶发酵 Shake flask | 5.39 4.86 | [ [ |
L-HS | E. coli E. coli E. coli | 过表达高丝氨酸脱氢酶 I基因thrA Overexpression of thrA 过表达高丝氨酸脱氢酶II基因metL Overexpression metL 过表达高丝氨酸外排蛋白编码基因rhtA及敲除tdcC基因 Overexpression of rhtA and deletion of tdcC | 分批补料 Fed-batch 分批补料 Fed-batch 分批补料 Fed-batch | 1.20 1.04 39.50 | [ [ [ |
Trans-4-hydroxy-L-proline | E. coli | 引入T7 RNA聚合酶,敲除L-脯氨酸基因putA,整合L-脯氨酸-4-羟基化酶基因 Introduction of T7 RNA polymerase, deletion of putA and integration of the L-proline-4-hydroxylase gene | 分批补料 Fed-batch | 48.60 | [ |
5-HTP | E. coli | 定向进化XcP4H与辅酶MH4再生系统共表达 Directed evolution of XcP4H co-expressed with the auxin MH4 regeneration system | 摇瓶发酵 Shake flask | 1.11 | [ |
L-DOPA | E. coli | 用半乳糖渗透酶基因galP和葡萄糖激酶基因glk替代PTS功能 Replacement of PTS function with galP and glk | 分批补料 Fed-batch | 1.51 | [ |
[1] |
Adhikari A, Bhattarai BR, Aryal A, et al. Reprogramming natural proteins using unnatural amino acids[J]. RSC Adv, 2021, 11(60): 38126-38145.
doi: 10.1039/d1ra07028b pmid: 35498070 |
[2] | Curnew LJF, McNicholas K, Green B, et al. Visualizing HCV core protein via fluorescent unnatural amino acid incorporation[C]// Viruses 2020—Novel Concepts in Virology. Basel Switzerland: MDPI, 2020, 50(1):129. |
[3] |
Salehi D, Mozaffari S, Zoghebi K, et al. Amphiphilic cell-penetrating peptides containing natural and unnatural amino acids as drug delivery agents[J]. Cells, 2022, 11(7): 1156.
doi: 10.3390/cells11071156 URL |
[4] | 史朝为, 石攀, 田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532. |
Shi CW, Shi P, Tian CL. NMR studies of large protein dynamics using unnatural amino acids[J]. Chin J Magn Reson, 2021, 38(4): 523-532. | |
[5] |
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes[J]. Protein Eng Des Sel, 2023, 36: gzad003.
doi: 10.1093/protein/gzad003 URL |
[6] |
Shi P, Wang H, Xi ZY, et al. Site-specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid[J]. Protein Sci, 2011, 20(1): 224-228.
doi: 10.1002/pro.v20.1 URL |
[7] |
Yamaguchi A, Matsuda T, Ohtake K, et al. Incorporation of a doubly functionalized synthetic amino acid into proteins for creating chemical and light-induced conjugates[J]. Bioconjug Chem, 2016, 27(1): 198-206.
doi: 10.1021/acs.bioconjchem.5b00602 URL |
[8] | 朱银雪, 王德祥, 孔影, 等. 基因编码非天然氨基酸技术及其在生物医学领域的应用[J]. 中国药科大学学报, 2022, 53(4): 383-391. |
Zhu YX, Wang DX, Kong Y, et al. Genetic incorporation of unnatural amino acids into proteins and its translational application in biomedicine[J]. J China Pharm Univ, 2022, 53(4): 383-391. | |
[9] |
Chin JW, Martin AB, King DS, et al. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli[J]. Proc Natl Acad Sci U S A, 2002, 99(17): 11020-11024.
doi: 10.1073/pnas.172226299 URL |
[10] |
Li YW, Dalby PA. Engineering of enzymes using non-natural amino acids[J]. Biosci Rep, 2022, 42(8): BSR20220168.
doi: 10.1042/BSR20220168 URL |
[11] |
Ugwumba IN, Ozawa K, Xu ZQ, et al. Improving a natural enzyme activity through incorporation of unnatural amino acids[J]. J Am Chem Soc, 2011, 133(2): 326-333.
doi: 10.1021/ja106416g pmid: 21162578 |
[12] |
Li JC, Liu T, Wang Y, et al. Enhancing protein stability with genetically encoded noncanonical amino acids[J]. J Am Chem Soc, 2018, 140(47): 15997-16000.
doi: 10.1021/jacs.8b07157 pmid: 30433771 |
[13] |
Pagar AD, Jeon H, Khobragade TP, et al. Non-canonical amino acid-based engineering of(R)-amine transaminase[J]. Front Chem, 2022, 10: 839636.
doi: 10.3389/fchem.2022.839636 URL |
[14] |
Parsons JF, Xiao G, Gilliland GL, et al. Enzymes harboring unnatural amino acids: mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferase containing 5-fluorotryptophan[J]. Biochemistry, 1998, 37(18): 6286-6294.
pmid: 9572843 |
[15] |
Pott M, Hayashi T, Mori T, et al. A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold[J]. J Am Chem Soc, 2018, 140(4): 1535-1543.
doi: 10.1021/jacs.7b12621 pmid: 29309143 |
[16] | 高晓威, 韦思平, 王钦. 遗传密码子扩展技术在蛋白质及多肽类药物中的应用[J]. 生物化学与生物物理进展, 2022, 49(1): 183-201. |
Gao XW, Wei SP, Wang Q. Applications of genetic code expansion in protein and peptide drugs[J]. Prog Biochem Biophys, 2022, 49(1): 183-201. | |
[17] | 李明莹, 汪琳, 马宁宁. 定点偶联技术在抗体药物偶联物中的应用[J]. 药学进展, 2021, 45(3): 180-187. |
Li MY, Wang L, Ma NN. Application of site-specific conjugation techniques in antibody-drug conjugates[J]. Prog Pharm Sci, 2021, 45(3): 180-187. | |
[18] |
Kularatne SA, Deshmukh V, Ma J, et al. A CXCR4-targeted site-specific antibody-drug conjugate[J]. Angew Chem Int Ed Engl, 2014, 53(44): 11863-11867.
doi: 10.1002/anie.v53.44 URL |
[19] |
Zimmerman ES, Heibeck TH, Gill A, et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system[J]. Bioconjug Chem, 2014, 25(2): 351-361.
doi: 10.1021/bc400490z URL |
[20] | 梁学军, 宫丽颖, 周菲, 等. 非天然氨基酸定点偶联抗人类表皮生长因子受体2-抗体偶联药物的药理学活性[J]. 北京大学学报: 医学版, 2019, 51(5): 797-804. |
Liang XJ, Gong LY, Zhou F, et al. Pharmacological effects of site specific conjugated anti-human epidermal growth factor receptor 2-antibody drug conjugate using unnatural amino acid technology[J]. J Peking Univ Heath Sci, 2019, 51(5): 797-804. | |
[21] |
Rezhdo A, Islam M, Huang MJ, et al. Future prospects for noncanonical amino acids in biological therapeutics[J]. Curr Opin Biotechnol, 2019, 60: 168-178.
doi: 10.1016/j.copbio.2019.02.020 URL |
[22] |
魏岱旭, 龚海伦, 张旭维. 抗菌肽的生物合成及医学应用[J]. 合成生物学, 2022, 3(4): 709-727.
doi: 10.12211/2096-8280.2022-001 |
Wei DX, Gong HL, Zhang XW. Biosynthesis of antimicrobial peptides and its medical application[J]. Synth Biol J, 2022, 3(4): 709-727. | |
[23] | Pan M, Lu C, Zheng MC, et al. Unnatural amino-acid-based star-shaped poly(l-ornithine)s as emerging long-term and biofilm-disrupting antimicrobial peptides to treat Pseudomonas aeruginosa-infected burn wounds[J]. Adv Healthc Mater, 2020, 9(19): e2000647. |
[24] |
D'Souza AR, Necelis MR, Kulesha A, et al. Beneficial impacts of incorporating the non-natural amino acid azulenyl-alanine into the trp-rich antimicrobial peptide buCATHL4B[J]. Biomolecules, 2021, 11(3): 421.
doi: 10.3390/biom11030421 URL |
[25] |
Zeynaloo E, Zahran EM, Yang YP, et al. Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure[J]. Biosens Bioelectron, 2022, 200: 113861.
doi: 10.1016/j.bios.2021.113861 URL |
[26] |
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies[J]. Nat Rev Rheumatol, 2016, 12(1): 49-62.
doi: 10.1038/nrrheum.2015.169 pmid: 26656660 |
[27] | 李瑞洋, 冉智光, 罗炼钊, 等. 非天然氨基酸正交翻译技术:一种新型基因工程活病毒疫苗研发技术[J]. 生物工程学报, 2020, 36(5): 891-898. |
Li RY, Ran ZG, Luo LZ, et al. Unnatural amino acid orthogonal translation: a genetic engineering technology for the development of new-type live viral vaccine[J]. Chin J Biotechnol, 2020, 36(5): 891-898. | |
[28] |
史红玲, 王文杰, 李祥, 等. D-扁桃酸脱氢酶和L-亮氨酸脱氢酶级联催化的L-苯甘氨酸对映选择性生物合成[J]. 应用化学, 2020, 37(2): 168-174.
doi: 10.11944/j.issn.1000-0518.2020.02.190189 |
Shi HL, Wang WJ, Li X, et al. Enantioselective biosynthesis of L-phenylglycine via cascade biocatalysis of D-mandelate dehydrogenase and L-leucine dehydrogenase[J]. Chin J Appl Chem, 2020, 37(2): 168-174. | |
[29] | 李珊珊. 生物催化不对称合成非天然氨基酸(S)-2-环丙基甘氨酸[D]. 重庆: 重庆医科大学, 2020. |
Li SS. Biocatalytic asymmetric synthesis of unnatural amino acid(S)-2-cyclopropylglycine[D]. Chongqing: Chongqing Medical University, 2020. | |
[30] | 汤晓玲, 张慧敏, 柳志强, 等. 非天然氨基酸细胞工厂的构建与应用[J]. 生物工程学报, 2022, 38(4): 1295-1306. |
Tang XL, Zhang HM, Liu ZQ, et al. Construction and application of microbial cell factories for unnatural amino acids[J]. Chin J Biotechnol, 2022, 38(4): 1295-1306. | |
[31] | 程峰, 相超, 王亚军. ω-转氨酶不对称合成手性胺及非天然氨基酸的研究进展[J]. 生物加工过程, 2018, 16(3): 1-11. |
Cheng F, Xiang C, Wang YJ. ω-Transaminase for asymmetric synthesis of chiral amines and unnatural amino acids[J]. Chin J Bioprocess Eng, 2018, 16(3): 1-11. | |
[32] | 吴法浩. 非天然手性氨基酸合成的研究进展[J]. 生物化工, 2020, 6(1): 122-125, 129. |
Wu FH. Advances in the synthesis of non-natural chiral amino acids[J]. Biol Chem Eng, 2020, 6(1): 122-125, 129. | |
[33] |
陈久洲, 王钰, 蒲伟, 等. 5-氨基乙酰丙酸生物合成技术的发展及展望[J]. 合成生物学, 2021, 2(6): 1000-1016.
doi: 10.12211/2096-8280.2021-010 |
Chen JZ, Wang Y, Pu W, et al. Advances and perspective on bioproduction of 5-aminolevulinic acid[J]. Synth Biol J, 2021, 2(6): 1000-1016. | |
[34] |
Krátký M, Bősze S, Baranyai Z, et al. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide[J]. Bioorg Med Chem Lett, 2017, 27(23): 5185-5189.
doi: S0960-894X(17)31044-2 pmid: 29097168 |
[35] |
Zhu L, Wu Z, Jin JM, et al. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis[J]. Appl Microbiol Biotechnol, 2016, 100(13): 5805-5813.
doi: 10.1007/s00253-016-7371-5 pmid: 26898942 |
[36] | 刘洋, 牟庆璇, 石雅南, 等. 微生物细胞工厂的代谢调控[J]. 生物工程学报, 2021, 37(5): 1541-1563. |
Liu Y, Mu QX, Shi YN, et al. Metabolic regulation in constructing microbial cell factories[J]. Chin J Biotechnol, 2021, 37(5): 1541-1563. | |
[37] |
Ning YK, Wu XJ, Zhang CL, et al. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli[J]. Metab Eng, 2016, 36: 10-18.
doi: 10.1016/j.ymben.2016.02.013 URL |
[38] | 李洋, 张稳杰, 韩雨辰, 等. 生物法合成4-羟基异亮氨酸的代谢工程研究进展[J]. 食品与发酵工业, 2022, 48(5): 281-288. |
Li Y, Zhang WJ, Han YC, et al. Advances on metabolic engineering for biosynthesis of 4-hydroxyisoleucine[J]. Food Ferment Ind, 2022, 48(5): 281-288. | |
[39] |
Shi F, Zhang SP, Li YF, et al. Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp. lactofermentum[J]. Appl Microbiol Biotechnol, 2019, 103(10): 4113-4124.
doi: 10.1007/s00253-019-09791-2 |
[40] | Principe U, 乔郅钠, 龙梦飞, 等. 重组大肠杆菌全细胞催化合成4-羟基异亮氨酸[J]. 食品与生物技术学报, 2021, 40(4): 26-35. |
Principe U, Qiao ZN, Long MF, et al. Whole-cell catalytic synthesis of 4-hydroxyisoleucine using recombinant Escherichia coli[J]. J Food Sci Biotechnol, 2021, 40(4): 26-35. | |
[41] | 李宇虹, 李贵荣, 杨文君, 等. 合成5-氨基乙酰丙酸谷氨酸棒杆菌的代谢工程构建[J]. 食品与发酵工业, 2022, 48(24): 8-15. |
Li YH, Li GR, Yang WJ, et al. Construction of Corynebacterium glutamicum for synthesis of 5-aminolevulinic acid[J]. Food Ferment Ind, 2022, 48(24): 8-15. | |
[42] | 张双虹, 邹亚兰, 宋鑫, 等. 代谢工程合成5-氨基乙酰丙酸的研究进展[J]. 生物加工过程, 2017, 15(5): 65-70. |
Zhang SH, Zou YL, Song X, et al. Advances in 5-aminolevulinic acid microbial production[J]. Chin J Bioprocess Eng, 2017, 15(5): 65-70. | |
[43] |
Kang Z, Wang Y, Gu PF, et al. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose[J]. Metab Eng, 2011, 13(5): 492-498.
doi: 10.1016/j.ymben.2011.05.003 URL |
[44] | 魏敏华, 李宇虹, 张佳蓉, 等. 代谢工程构建谷氨酸棒杆菌合成5-氨基乙酰丙酸[J]. 食品与发酵工业, 2022, 48(14):9-15. |
Wei MH, Li YH, Zhang JR, et al. Metabolic engineering of Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid[J]. Food Ferment Ind, 2022, 48(14): 9-15. | |
[45] | 李建强. 重组大肠杆菌发酵生产L-2-氨基丁酸的研究[D]. 杭州: 浙江工业大学, 2019. |
Li JQ. Studies on fermentative production of L-2-aminobutyric acid by recombinant Escherichia coli[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
[46] |
胥健萍, 王颖, 李春, 等. 微生物细胞工厂中代谢途径动态调控策略与网络构建[J]. 化工进展, 2022, 41(12): 6511-6521.
doi: 10.16085/j.issn.1000-6613.2022-0418 |
Xu JP, Wang Y, Li C, et al. Dynamic regulation strategies and regulation network construction of metabolic pathways in microbial cell factories[J]. Chem Ind Eng Prog, 2022, 41(12): 6511-6521.
doi: 10.16085/j.issn.1000-6613.2022-0418 |
|
[47] |
于政, 申晓林, 孙新晓, 等. 动态调控策略在代谢工程中的应用研究进展[J]. 合成生物学, 2020, 1(4): 440-453.
doi: 10.12211/2096-8280.2020-029 |
Yu Z, Shen XL, Sun XX, et al. Application of dynamic regulation strategies in metabolic engineering[J]. Synth Biol J, 2020, 1(4): 440-453. | |
[48] |
Galizi R, Jaramillo A. Engineering CRISPR guide RNA riboswitches for in vivo applications[J]. Curr Opin Biotechnol, 2019, 55: 103-113.
doi: 10.1016/j.copbio.2018.08.007 URL |
[49] | 来文梅, 谭书煜, 史锋. 动态调控谷氨酸棒状杆菌合成4-羟基异亮氨酸[J]. 食品与发酵工业, 2022, 48(17): 42-48. |
Lai WM, Tan SY, Shi F. Dynamic regulation of Corynebacterium glutamicum for biosynthesis of 4-hydroxyisoleucine[J]. Food Ferment Ind, 2022, 48(17): 42-48. | |
[50] |
Zhou LB, Ren J, Li ZD, et al. Characterization and engineering of a Clostridium glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in Escherichia coli[J]. ACS Synth Biol, 2019, 8(10): 2327-2335.
doi: 10.1021/acssynbio.9b00137 URL |
[51] |
Gu F, Jiang W, Mu YL, et al. Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems[J]. ACS Synth Biol, 2020, 9(2): 209-217.
doi: 10.1021/acssynbio.9b00290 pmid: 31944663 |
[52] | 张博文, 陈可泉, 曹伟佳, 等. 产顺式-4-羟脯氨酸枯草芽孢杆菌工程菌的构建及发酵优化[J]. 食品工业科技, 2017, 38(13): 101-106. |
Zhang BW, Chen KQ, Cao WJ, et al. Construction and optimization of fermentation of Bacillus subtilis cis-4-hydroxyproline engineering bacteria[J]. Sci Technol Food Ind, 2017, 38(13): 101-106. | |
[53] |
李强, 韩亚昆, 蒋帅, 等. 代谢工程改造大肠杆菌合成反式-4-羟基-L-脯氨酸[J]. 食品科学, 2020, 41(2): 202-207.
doi: 10.7506/spkx1002-6630-20181105-056 |
Li Q, Han YK, Jiang S, et al. Metabolic engineering of Escherichia coli for production of trans-4-hydroxy-L-proline[J]. Food Sci, 2020, 41(2): 202-207. | |
[54] |
Miscevic D, Mao JY, Kefale T, et al. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli[J]. Biotechnol Bioeng, 2021, 118(1): 30-42.
doi: 10.1002/bit.v118.1 URL |
[55] |
Zhu CC, Chen JZ, Wang Y, et al. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli[J]. Biotechnol Bioeng, 2019, 116(8): 2018-2028.
doi: 10.1002/bit.v116.8 URL |
[56] |
Yang P, Liu WJ, Cheng XL, et al. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield[J]. Appl Environ Microbiol, 2016, 82(9): 2709-2717.
doi: 10.1128/AEM.00224-16 URL |
[57] |
Chen JZ, Wang Y, Guo X, et al. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum[J]. Biotechnol Biofuels, 2020, 13: 41.
doi: 10.1186/s13068-020-01685-0 |
[58] |
Brown JF, Dawes IW. Regulation of chorismate mutase in Saccharomyces cerevisiae[J]. Mol Gen Genet, 1990, 220(2): 283-288.
doi: 10.1007/BF00260495 URL |
[59] |
Xu JM, Li JQ, Zhang B, et al. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering[J]. Microb Cell Fact, 2019, 18(1): 43.
doi: 10.1186/s12934-019-1095-z |
[60] |
Li H, Wang BS, Li YR, et al. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine[J]. J Ind Microbiol Biotechnol, 2017, 44(1): 75-88.
doi: 10.1007/s10295-016-1870-3 URL |
[61] |
Lin YH, Sun XX, Yuan QP, et al. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan[J]. ACS Synth Biol, 2014, 3(7): 497-505.
doi: 10.1021/sb5002505 pmid: 24936877 |
[62] |
Muñoz AJ, Hernández-Chávez G, de Anda R, et al. Metabolic engineering of Escherichia coli for improving L-3, 4-dihydroxyphenylalanine(L-DOPA)synthesis from glucose[J]. J Ind Microbiol Biotechnol, 2011, 38(11): 1845-1852.
doi: 10.1007/s10295-011-0973-0 URL |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[3] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[4] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[5] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[6] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[7] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[10] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[11] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[12] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[13] | QIU Yi-bin, MA Yan-qin, SHA Yuan-yuan, ZHU Yi-fan, SU Er-zheng, LEI Peng, LI Sha, XU Hong. Research Progress in Molecular Genetic Manipulation Technology of Bacillus amyloliquefaciens and Its Application [J]. Biotechnology Bulletin, 2022, 38(2): 205-217. |
[14] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[15] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||