Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 193-202.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0506
Previous Articles Next Articles
SA Shi-juan1,2(), WU Han-yu1,2, WEN Yuan1,2, CHEN Xue-na1,2, ZHENG Rui1,2, YAO Xin-ling1,2()
Received:
2022-04-24
Online:
2023-02-26
Published:
2023-03-07
SA Shi-juan, WU Han-yu, WEN Yuan, CHEN Xue-na, ZHENG Rui, YAO Xin-ling. Responses of Choloroplast Specific Protein Profile to Different Stomatal Densities in Nicotiana benthamiana[J]. Biotechnology Bulletin, 2023, 39(2): 193-202.
名称Name | 序列Sequence(5'-3') | |
---|---|---|
EP | EPF | TCCCGCCTTCAGTTTAGC |
EPR | CCCTTACGTCAGTGGAGATATC | |
EP+ | EP+F | TCTAGCCAAAGCCTACGTCCAT |
EP+R | AGGGAAACAAGGTCCACAAGCA | |
EP- | EP-F | AGCCAAAGCCTACGTCCATAT |
EP-R | TTGGATACATCTCCATTCCTAACA |
Table 1 Primers and sequences used in the study
名称Name | 序列Sequence(5'-3') | |
---|---|---|
EP | EPF | TCCCGCCTTCAGTTTAGC |
EPR | CCCTTACGTCAGTGGAGATATC | |
EP+ | EP+F | TCTAGCCAAAGCCTACGTCCAT |
EP+R | AGGGAAACAAGGTCCACAAGCA | |
EP- | EP-F | AGCCAAAGCCTACGTCCATAT |
EP-R | TTGGATACATCTCCATTCCTAACA |
Fig. 1 Assay on stomatal density, chlorophyll accumulation and photosynthesis as well as stomata observation for ntepf-m and ntepf-p lines A: Relative accumulation of StEPF 2 mRNA. B: Assay on leaf stomatal density. C: Assay on stomatal conductance. D: Assay on net photosynthesis rate. E: Assay on chorophyll content. F: Stomatal observation for StEPF 2 overexpression lines. G: Stomatal observation for control lines. H: Stomatal observation for StEPF 2 inhibition expression lines. Data in statistics analysis from 3 repetitions, ** for P<0.05 difference significant level
生物过程 Biological process | 分子功能 Molecular function | 细胞组分 Cellular components | |
---|---|---|---|
ntepf-m | 120 | 69 | 72 |
ntepf-p | 123 | 55 | 98 |
Table 2 GO enrichment with DEPs sharing >60% similarity with orthologs in Arabidopsis
生物过程 Biological process | 分子功能 Molecular function | 细胞组分 Cellular components | |
---|---|---|---|
ntepf-m | 120 | 69 | 72 |
ntepf-p | 123 | 55 | 98 |
GO ID | U/R比值U/R ratio |
---|---|
光系统II反应中心Photosystem II reaction center(GO:0009539) | 0.30 |
光系统II放氧复合物Photosystem II oxygen evolving complex(GO:0009654) | 0.33 |
光系统II Photosystem II(GO:0009523) | 0.27 |
光系统I反应中心Photosystem I reaction center(GO:0009538) | 0.36 |
光系统I Photosystem I(GO:0009522) | 0.36 |
光系统Photosystem(GO:0009521) | 0.31 |
细胞色素b6f复合物Cytochrome b6f complex(GO:0009512) | 0.33 |
叶绿体Chromoplast(GO:0009509) | 0.67 |
叶绿体类囊体膜蛋白复合物Chloroplast thylakoid membrane protein complex(GO:0098807) | 0.12 |
叶绿体基质类囊体 Chloroplast stromal thylakoid(GO:0009533) | 0.30 |
Table 3 GO enrichment with stomatal density rising specific DEPs
GO ID | U/R比值U/R ratio |
---|---|
光系统II反应中心Photosystem II reaction center(GO:0009539) | 0.30 |
光系统II放氧复合物Photosystem II oxygen evolving complex(GO:0009654) | 0.33 |
光系统II Photosystem II(GO:0009523) | 0.27 |
光系统I反应中心Photosystem I reaction center(GO:0009538) | 0.36 |
光系统I Photosystem I(GO:0009522) | 0.36 |
光系统Photosystem(GO:0009521) | 0.31 |
细胞色素b6f复合物Cytochrome b6f complex(GO:0009512) | 0.33 |
叶绿体Chromoplast(GO:0009509) | 0.67 |
叶绿体类囊体膜蛋白复合物Chloroplast thylakoid membrane protein complex(GO:0098807) | 0.12 |
叶绿体基质类囊体 Chloroplast stromal thylakoid(GO:0009533) | 0.30 |
Fig. 3 Accumulation variation of co-expreesion DEPs resulting from the leaves of up- or down-stomatal density A: Expression-lowing 3 DEPs along with rising stomatal density. B: Expression-lowing 12 DEPs along with rising stomatal density. C: Expression-rising 7 DEPs along with increased stomatal density
Fig. 4 Accumulation variation of specific DEPs in response to rising stomatal density A: PSII-PSI complex DEP accumulations up-regulated by high stomatal density. B: Electron transfer DEP accumulations down-regulated by high stomatal density. C: PSII component DEP accumulations down-regulated by high stomatal density
Fig. 5 Accumulation variation of specific DEPs in responses to lowering stomatal density A: DEP accumulations up-regulated by low stomatal density. B: DEP accumulations down-regulated by low stomatal density
[1] |
Engineer CB, Ghassemian M, Anderson JC, et al. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development[J]. Nature, 2014, 513(7517): 246-250.
doi: 10.1038/nature13452 URL |
[2] |
Gao J, Han X, Seneweera S, et al. Leaf photosynthesis and yield components of mung bean under fully open-air elevated[CO2][J]. J Integr Agric, 2015, 14(5): 977-983.
doi: 10.1016/S2095-3119(14)60941-2 URL |
[3] |
Zhang JB, De-Oliveira-Ceciliato P, Takahashi Y, et al. Insights into the molecular mechanisms of CO2 mediated regulation of stomatal movements[J]. Curr Biol, 2018, 28(23): R1356-R1363.
doi: 10.1016/j.cub.2018.10.015 URL |
[4] |
Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising[CO2]: mechanisms and environmental interactions[J]. Plant Cell Environ, 2007, 30(3): 258-270.
doi: 10.1111/j.1365-3040.2007.01641.x URL |
[5] |
Jumrani K, Bhatia VS, Pandey GP. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean[J]. Photosynth Res, 2017, 131(3): 333-350.
doi: 10.1007/s11120-016-0326-y URL |
[6] |
Azoulay-Shemer T, Palomares A, Bagheri A, et al. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 and ABA-induced stomatal closing[J]. Plant J, 2015, 83(4): 567-581.
doi: 10.1111/tpj.12916 URL |
[7] |
Hippler M, Nelson N. The plasticity of photosystem I[J]. Plant Cell Physiol, 2021, 62(7): 1073-1081.
doi: 10.1093/pcp/pcab046 URL |
[8] |
Pietrzykowska M, Suorsa M, Semchonok DA, et al. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis[J]. Plant Cell, 2014, 26(9): 3646-3660.
doi: 10.1105/tpc.114.127373 URL |
[9] |
Brestic M, Zivcak M, Kunderlikova K, et al. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines[J]. Photosynth Res, 2015, 125(1/2): 151-166.
doi: 10.1007/s11120-015-0093-1 URL |
[10] |
Yokono M, Takabayashi A, Kishimoto J, et al. The PSI-PSII megacomplex in green plants[J]. Plant Cell Physiol. 2019, 60(5):1098-1108.
doi: 10.1093/pcp/pcz026 pmid: 30753722 |
[11] | Bečková M, Sobotka R, Komenda J. Photosystem II antenna modules CP43 and CP47 do not form a stable ‘no reaction centre complex’ in the cyanobacterium Synechocystis sp. PCC 6803[J]. Photosynth Res, 2022: 2022 Jan 11. |
[12] |
Chen H, Zhang DY, Guo JK, et al. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II[J]. Plant Mol Biol, 2006, 61(4/5): 567-575.
doi: 10.1007/s11103-006-0031-x URL |
[13] |
Schult K, Meierhoff K, Paradies S, et al. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana[J]. Plant Cell, 2007, 19(4): 1329-1346.
doi: 10.1105/tpc.106.042895 URL |
[14] |
Williams-Carrier R, Brewster C, Belcher SE, et al. The Arabidopsis pentatricopeptide repeat protein LPE1 and its maize ortholog are required for translation of the chloroplast psbJ RNA[J]. Plant J, 2019, 99(1): 56-66.
doi: 10.1111/tpj.14308 |
[15] |
Swiatek M, Regel RE, Meurer J, et al. Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: the psbEFLJoperon in Nicotiana tabacum[J]. Mol Genet Genomics, 2003, 268(6): 699-710.
pmid: 12655396 |
[16] |
Munekage Y, Takeda S, Endo T, et al. Cytochrome b(6)f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis[J]. Plant J, 2001, 28(3): 351-359.
pmid: 11722777 |
[17] |
Jahns P, Graf M, Munekage Y, et al. Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis[J]. FEBS Lett, 2002, 519(1/2/3): 99-102.
doi: 10.1016/S0014-5793(02)02719-9 URL |
[18] |
Maiwald D, Dietzmann A, Jahns P, et al. Knock-out of the genes coding for the Rieske protein and the ATP-synthase delta-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression[J]. Plant Physiol, 2003, 133(1): 191-202.
doi: 10.1104/pp.103.024190 URL |
[19] |
Zhang D, Li YH, Zhang XY, et al. The SWI2/SNF2 chromatin-remodeling ATPase BRAHMA regulates chlorophyll biosynthesis in Arabidopsis[J]. Mol Plant, 2017, 10(1): 155-167.
doi: S1674-2052(16)30272-6 pmid: 27865928 |
[20] |
Bartley GE, Scolnik PA, Beyer P. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and Zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene[J]. Eur J Biochem, 1999, 259(1/2): 396-403.
doi: 10.1046/j.1432-1327.1999.00051.x URL |
[21] |
Edelman M, Mattoo AK. D1-protein dynamics in photosystem II: the lingering enigma[J]. Photosynth Res, 2008, 98(1/2/3): 609-620.
doi: 10.1007/s11120-008-9342-x URL |
[22] |
Yang HX, Liu J, Wen XG, et al. Molecular mechanism of photosystem I assembly in oxygenic organisms[J]. Biochim Biophys Acta, 2015, 1847(9): 838-848.
doi: 10.1016/j.bbabio.2014.12.011 pmid: 25582571 |
[23] |
Lisenbee CS, Lingard MJ, Trelease RN. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase[J]. Plant J, 2005, 43(6): 900-914.
pmid: 16146528 |
[24] |
Eastmond PJ. MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis[J]. Plant Cell, 2007, 19(4): 1376-1387.
doi: 10.1105/tpc.106.043992 pmid: 17449810 |
[25] |
Yu TS, Lue WL, Wang SM, et al. Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation[J]. Plant Physiol, 2000, 123(1): 319-326.
doi: 10.1104/pp.123.1.319 pmid: 10806248 |
[26] |
Gardberg A, Abendroth J, Bhandari J, et al. Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1, 6-bisphosphate[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67(Pt 9): 1051-1054.
doi: 10.1107/S174430911101894X pmid: 21904049 |
[27] |
Ishizaki T, Ohsumi C, Totsuka K, et al. Analysis of glutamate homeostasis by overexpression of fd-GOGAT gene in Arabidopsis thaliana[J]. Amino Acids, 2010, 38(3): 943-950.
doi: 10.1007/s00726-009-0303-2 pmid: 19468822 |
[28] |
Wagner U, Edwards R, Dixon DP, et al. Probing the diversity of the Arabidopsis glutathione S-transferase gene family[J]. Plant Mol Biol, 2002, 49(5): 515-532.
doi: 10.1023/A:1015557300450 URL |
[29] |
Hara K, Yokoo T, Kajita R, et al. Epidermal cell density is autoregulated via a secretory peptide, epidermal patterning factor 2 in Arabidopsis leaves[J]. Plant Cell Physiol, 2009, 50(6): 1019-1031.
doi: 10.1093/pcp/pcp068 URL |
[30] |
Ohki S, Takeuchi M, Mori M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones[J]. Nat Commun, 2011, 2: 512.
doi: 10.1038/ncomms1520 pmid: 22027592 |
[31] |
Sugano SS, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis[J]. Nature, 2010, 463(7278): 241-244.
doi: 10.1038/nature08682 URL |
[32] |
Wang YL, Xie T, Zhang CL, et al. Overexpression of the potato StEPF2 gene confers enhanced drought tolerance in Arabidop-sis[J]. Plant Biotechnol Rep, 2020, 14(4): 479-490.
doi: 10.1007/s11816-020-00627-4 URL |
[33] |
Lima VF, Anjos LD, Medeiros DB, et al. The sucrose-to-malate ratio correlates with the faster CO2 and light stomatal responses of angiosperms compared to ferns[J]. New Phytol, 2019, 223(4): 1873-1887.
doi: 10.1111/nph.15927 URL |
[34] |
Lim SL, Flütsch S, Liu JH, et al. Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening[J]. Nat Commun, 2022, 13(1): 652.
doi: 10.1038/s41467-022-28263-2 URL |
[35] | 撒世娟, 殷倩, 伍涵宇, 等. 普通烟草体内过量表达St536基因对纤维素积累的影响[J]. 农业生物技术学报, 2021, 29(5): 915-923. |
Sa SJ, Yin Q, Wu HY, et al. Effects of overexpression of St536 gene on cellulose accumulation in Nicotiana tabacum[J]. J Agric Biotechnol, 2021, 29(5): 915-923. | |
[36] |
Xu YH, Liu R, Yan L, et al. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis[J]. J Exp Bot, 2012, 63(3): 1095-1106.
doi: 10.1093/jxb/err315 pmid: 22143917 |
[37] |
Tyutereva EV, Dmitrieva VA, Shavarda AL, et al. Stomata control is changed in a chlorophyll b-free barley mutant[J]. Funct Plant Biol, 2018, 45(4): 453-463.
doi: 10.1071/FP17056 pmid: 32290984 |
[38] |
撒世娟, 伍涵宇, 张晓萍, 等. 叶绿素结合蛋白CP24介导光照响应基因StRSM 1调控叶绿素积累[J]. 生物技术通报, 2021, 37(1): 198-204.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0502 |
Sa SJ, Wu HY, Zhang XP, et al. Light-responding gene StRSM 1 mediated by chlorophyll-binding protein CP24 regulates chlorophyll accumulation[J]. Biotechnol Bull, 2021, 37(1): 198-204. | |
[39] |
Spanos C, Moore JB. Sample preparation approaches for iTRAQ labeling and quantitative proteomic analyses in systems biology[J]. Methods Mol Biol, 2016, 1394: 15-24.
doi: 10.1007/978-1-4939-3341-9_2 pmid: 26700038 |
[40] |
Vaudel M, Burkhart JM, Zahedi RP, et al. iTRAQ data interpretation[J]. Methods Mol Biol, 2012, 893: 501-509.
doi: 10.1007/978-1-61779-885-6_30 pmid: 22665319 |
[41] |
Engineer CB, Hashimoto-Sugimoto M, Negi J, et al. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions[J]. Trends Plant Sci, 2016, 21(1): 16-30.
doi: S1360-1385(15)00229-0 pmid: 26482956 |
[42] |
Azoulay-Shemer T, Hsu PK, Schroeder JI. Seeing is believing[J]. Nat Plants, 2017, 3(10): 765-766.
doi: 10.1038/s41477-017-0025-5 pmid: 28970562 |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[3] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[4] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[5] | QIAN Bang, LIU Zhen-dong, ZHAO Yin, LI Jing, PRAJAPATI Meera, LI Yan-min, SUN Yue-feng, DOU Yong-xi. Establishment of Chemiluminescence Immunoassay for the Detection of Peste des Petits Ruminants Virus H Protein Antibodies [J]. Biotechnology Bulletin, 2023, 39(5): 120-129. |
[6] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
[7] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[8] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[9] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[10] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[11] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[12] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[13] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[14] | HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus [J]. Biotechnology Bulletin, 2023, 39(10): 163-174. |
[15] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||