Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 88-95.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0538
Previous Articles Next Articles
YANG Mao1,2(), LIN Yu-feng1,2, DAI Yang-shuo1,2, PAN Su-jun1,2, PENG Wei-ye1,2, YAN Ming-xiong1,2, LI Wei1,2, WANG Bing1,2(), DAI Liang-ying1,2()
Received:
2022-05-04
Online:
2023-02-26
Published:
2023-03-07
YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways[J]. Biotechnology Bulletin, 2023, 39(2): 88-95.
引物Primer | 序列Sequence(5'-3') |
---|---|
Ubq-F | AACCAGCTGAGGCCCAAGA |
Ubq-R | ACGATTGATTTAACCAGTCCATGA |
OsDIS1-F | GTATCATCACAGTGCGAGAAT |
OsDIS15-R DSM1-F DSM1-R | CATCTCATGAATTGCCATTAG GTGGTCATGGTCCATTATTGCC CCCAAACCCTCAACTGGCTTA |
OsSIK1-F | TCTGCTAGTCTGCCCGAGGAA |
OsSIK1-R | TATGTACTGGTTGCAATCAG |
OsSKIPa-F | TACAGATGCGATCCAAGGTG |
OsSKIPa-R | AGTGCCCTTAGCTCTTGCTC |
OsDSM2-F | GCTTCGCCTGGCAAATGG |
OsDSM2-R | ACCGTCCAAATGAGCTTCCA |
OsBZIP23-F OsBZIP23-R | GGAGCAGCAAAAGAATGAGG GGTCTTCAGCTTCACCATCC |
Table 1 Primers for RT-qPCR
引物Primer | 序列Sequence(5'-3') |
---|---|
Ubq-F | AACCAGCTGAGGCCCAAGA |
Ubq-R | ACGATTGATTTAACCAGTCCATGA |
OsDIS1-F | GTATCATCACAGTGCGAGAAT |
OsDIS15-R DSM1-F DSM1-R | CATCTCATGAATTGCCATTAG GTGGTCATGGTCCATTATTGCC CCCAAACCCTCAACTGGCTTA |
OsSIK1-F | TCTGCTAGTCTGCCCGAGGAA |
OsSIK1-R | TATGTACTGGTTGCAATCAG |
OsSKIPa-F | TACAGATGCGATCCAAGGTG |
OsSKIPa-R | AGTGCCCTTAGCTCTTGCTC |
OsDSM2-F | GCTTCGCCTGGCAAATGG |
OsDSM2-R | ACCGTCCAAATGAGCTTCCA |
OsBZIP23-F OsBZIP23-R | GGAGCAGCAAAAGAATGAGG GGTCTTCAGCTTCACCATCC |
Fig. 1 Phenotypes of OsDIS1-RNAi transgenic plants treated with abscisic acid (ABA) A: OsDIS1-RNAi transgenic plants were germinated on 1/2 MS medium containing different concentrations of ABA. B: Seed germination rates of wild-type and OsDIS1-RNAi plants under different concentrations of ABA. C, D: OsDIS1-RNAi transgenic root length and plant height statistics of plants; RNAi-21 as the representative result of the graph, the same below. The error bar represents ± SD of triplicate experiments
Fig. 4 Detection of antioxidant enzyme activity and MDA content in OsDIS1-RNAi transgenic plants A-C: CAT, SOD, POD activity and content in the leaves of OsDIS1-RNAi seedlings under drought stress. D: MDA content. The error bar represents ± SD of triplicate experiments
品种名称 Variety | 株高 Plant height /cm | 穗长 Panicle length /cm | 单株有效穗数 Effective panicle per plant | 每穗实粒数 Filled grains per panicle | 每穗总粒数 Total grains per panicle | 结实率 Seed setting /% | 千粒重 1 000 grain weight/g | 单株产量 Yield per plant /g |
---|---|---|---|---|---|---|---|---|
RNAi-8 | 94.4±5.2 | 19.4±1.6 | 26.8± 2.7 | 94.9±10.6 | 106.9±17.7 | 88.8±6.7 | 24.7±0.7 | 75.1±7.7 |
RNAi-21 | 96.7±6.2 | 20.4±1.4 | 28.6± 2.5 | 96.9±11.7 | 111.2±14.8 | 87.1±4.0 | 25.8±0.6 | 77.3±8.7 |
RNAi-22 | 95.7 ±4.1 | 19.6±0.9 | 30.4± 2.9 | 89.7±9.0 | 106.3±19.4 | 84.3±5.6 | 25.4±0.4 | 72.9±7.2 |
NPB | 96.2±5.2 | 19.1±1.4 | 26.2±2.6 | 95.6±13.3 | 108.6±19.3 | 88.0±7.5 | 24.9±0.5 | 73.1±6.8 |
Table 2 Agronomic characteristics of transgenic rice OsDIS1-RNAi
品种名称 Variety | 株高 Plant height /cm | 穗长 Panicle length /cm | 单株有效穗数 Effective panicle per plant | 每穗实粒数 Filled grains per panicle | 每穗总粒数 Total grains per panicle | 结实率 Seed setting /% | 千粒重 1 000 grain weight/g | 单株产量 Yield per plant /g |
---|---|---|---|---|---|---|---|---|
RNAi-8 | 94.4±5.2 | 19.4±1.6 | 26.8± 2.7 | 94.9±10.6 | 106.9±17.7 | 88.8±6.7 | 24.7±0.7 | 75.1±7.7 |
RNAi-21 | 96.7±6.2 | 20.4±1.4 | 28.6± 2.5 | 96.9±11.7 | 111.2±14.8 | 87.1±4.0 | 25.8±0.6 | 77.3±8.7 |
RNAi-22 | 95.7 ±4.1 | 19.6±0.9 | 30.4± 2.9 | 89.7±9.0 | 106.3±19.4 | 84.3±5.6 | 25.4±0.4 | 72.9±7.2 |
NPB | 96.2±5.2 | 19.1±1.4 | 26.2±2.6 | 95.6±13.3 | 108.6±19.3 | 88.0±7.5 | 24.9±0.5 | 73.1±6.8 |
[1] | 石卫标, 杨芬, 刘姣, 等. 过表达OsbHLH120基因提高水稻苗期抗旱性[J]. 基因组学与应用生物学, 2019, 38(12): 5558-5563. |
Shi WB, Yang F, Liu J, et al. Overexpression of OsbHLH120 enhance drought tolerance in rice seedling[J]. Genom Appl Biol, 2019, 38(12): 5558-5563. | |
[2] |
李嘉明, 孙健, 张明辉, 等. 水稻OsAMTR310基因的克隆与在干旱胁迫下的功能分析[J]. 华北农学报, 2018, 33(3): 44-49.
doi: 10.7668/hbnxb.2018.03.008 |
Li JM, Sun J, Zhang MH, et al. Cloning of OsAMTR310 and functional analysis under drought stress in rice[J]. Acta Agric Boreali Sin, 2018, 33(3): 44-49. | |
[3] | Sahebi M, Hanafi MM, Rafii MY, et al. Improvement of drought tolerance in rice(Oryza sativa L.): genetics, genomic tools, and the WRKY gene family[J]. Biomed Res Int, 2018, 2018: 3158474. |
[4] |
Wang CM, Song BB, Dai YQ, et al. Genome-wide identification and functional analysis of U-box E3 ubiquitin ligases gene family related to drought stress response in Chinese white pear(Pyrus bretschneideri)[J]. BMC Plant Biol, 2021, 21(1): 235.
doi: 10.1186/s12870-021-03024-3 URL |
[5] |
Cao MJ, Zhang YL, Liu X, et al. Combining chemical and genetic approaches to increase drought resistance in plants[J]. Nat Commun, 2017, 8(1): 1183.
doi: 10.1038/s41467-017-01239-3 URL |
[6] |
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Front Plant Sci, 2016, 7: 571.
doi: 10.3389/fpls.2016.00571 pmid: 27200044 |
[7] |
Fang LC, Su LY, et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. J Exp Bot, 2016, 67(9): 2829-2845.
doi: 10.1093/jxb/erw122 URL |
[8] |
Jeong JS, Kim YS, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1): 185-197.
doi: 10.1104/pp.110.154773 pmid: 20335401 |
[9] | 熊孟连, 戴星, 简燕, 等. 脱落酸依赖的与非依赖的信号途径的研究进展[J]. 基因组学与应用生物学, 2020, 39(12): 5796-5802. |
Xiong ML, Dai X, Jian Y, et al. Advances in the study of abscisic acid-dependent and non-dependent signaling pathways[J]. Genom Appl Biol, 2020, 39(12): 5796-5802 | |
[10] |
Oraee A, Tehranifar A. Evaluating the potential drought tolerance of pansy through its physiological and biochemical responses to drought and recovery periods[J]. Sci Hortic, 2020, 265: 109225.
doi: 10.1016/j.scienta.2020.109225 URL |
[11] |
Li P, Zhang B, Su TB, et al. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis[J]. Front Plant Sci, 2018, 9: 1792.
doi: 10.3389/fpls.2018.01792 URL |
[12] |
Zhou T, Yang XY, Wang LC, et al. GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis[J]. Plant Mol Biol, 2014, 85(1/2): 163-177.
doi: 10.1007/s11103-014-0175-z URL |
[13] |
王亦栖, 余炳伟, 等. 植物泛素基因研究进展[J]. 中国农学通报, 2020, 36(20): 14-22.
doi: 10.11924/j.issn.1000-6850.casb20190500148 |
Wang YX, Yu BW, et al. Advances in research on plant ubiquitin genes[J]. Chin Agric Sci Bull, 2020, 36(20): 14-22.
doi: 10.11924/j.issn.1000-6850.casb20190500148 |
|
[14] |
Shin LJ, Lo JC, Chen GH, et al. IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis[J]. Plant Cell, 2013, 25(8): 3039-3051.
doi: 10.1105/tpc.113.115212 URL |
[15] |
An JP, Liu X, Song LQ, et al. Apple RING finger E3 ubiquitin ligase MdMIEL1 negatively regulates salt and oxidative stresses tolerance[J]. J Plant Biol, 2017, 60(2): 137-145.
doi: 10.1007/s12374-016-0457-x URL |
[16] |
Kim JH, Kim WT. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses[J]. Plant Physiol, 2013, 162(3): 1733-1749.
doi: 10.1104/pp.113.220103 URL |
[17] | 张雅文, 沈祥娟, 等. 大豆E3泛素连接酶基因GmAIRP1的同源克隆及在烟草中的功能鉴定[J]. 植物遗传资源学报, 2019, 20(4): 1011-1019. |
Zhang YW, Shen XJ, et al. Homologous cloning of soybean E3 ubiquitin ligase gene GmAIRP1 and its functional identification in tobacco[J]. J Plant Genet Resour, 2019, 20(4): 1011-1019. | |
[18] |
Park GG, Park JJ, Yoon J, et al. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1(OsDSG1), controls seed germination and stress responses in rice[J]. Plant Mol Biol, 2010, 74(4/5): 467-478.
doi: 10.1007/s11103-010-9687-3 URL |
[19] |
Xie Q, Guo HS, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903): 167-170.
doi: 10.1038/nature00998 URL |
[20] |
Ning YS, Jantasuriyarat C, Zhao QZ, et al. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice[J]. Plant Physiol, 2011, 157(1): 242-255.
doi: 10.1104/pp.111.180893 pmid: 21719639 |
[21] | Dametto A, Buffon G, dos Reis Blasi ÉA, et al. Ubiquitination pathway as a target to develop abiotic stress tolerance in rice[J]. Plant Signal Behav, 2015, 10(9): e1057369. |
[22] |
Qin Q, Wang YX, Huang LY, et al. A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice[J]. Plant Mol Biol, 2020, 102(1/2): 89-107.
doi: 10.1007/s11103-019-00933-8 URL |
[23] | Fisher LHC, Han JW, Corke FMK, et al. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of Brachypodium distachyon[J]. Front Plant Sci, 2016, 7: 1751. |
[24] |
Xiang Y, Tang N, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiol, 2008, 148(4): 1938-1952.
doi: 10.1104/pp.108.128199 pmid: 18931143 |
[25] |
Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress[J]. Plant Cell Rep, 2013, 32(7): 985-1006.
doi: 10.1007/s00299-013-1414-5 pmid: 23508256 |
[26] |
He K, Zhao X, Chi XY, et al. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis[J]. J Plant Physiol, 2019, 233: 84-93.
doi: 10.1016/j.jplph.2019.01.001 URL |
[27] | Zhang Q, Wing RA. Transformation and transgenic breeding[M]. New York: Springer, 2013, 24: 363-386. |
[28] |
Bai LP, Sui FG, Ge TD, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16(3): 326-332.
doi: 10.1016/S1002-0160(06)60059-3 URL |
[29]. |
Li JM, Zhang MH, Yang LM, et al. OsADR3 increases drought stress tolerance by inducing antioxidant defense mechanisms and regulating OsGPX1 in rice(Oryza sativa L.)[J]. The Crop Journal, 2021, 9(05): 1003-1017.
doi: 10.1016/j.cj.2020.12.005 URL |
[30] |
Dubey AK, Kumar N, Kumar A, et al. Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L[J]. Ecotoxicol Environ Saf, 2019, 171: 54-65.
doi: 10.1016/j.ecoenv.2018.12.050 URL |
[31] |
Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell Environ, 2010, 33(4): 453-467.
doi: 10.1111/j.1365-3040.2009.02041.x URL |
[32] |
Ning J, Li XH, Hicks LM, et al. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice[J]. Plant Physiol, 2010, 152(2): 876-890.
doi: 10.1104/pp.109.149856 URL |
[33] |
Park BS, Eo HJ, Jang IC, et al. Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1[J]. Biochem Biophys Res Commun, 2010, 398(2): 242-246.
doi: 10.1016/j.bbrc.2010.06.067 URL |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[5] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[6] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[7] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[8] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[9] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[10] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[11] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[12] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[13] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[14] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[15] | LEI Cai-rong, GUO Xiao-peng, CHAI Ran, ZHANG Miao-miao, REN Jun-le, LU Dong. Application of Omics Techniques in Incluced Breecling via Heavy Ion Beam Irradiating Microorganisms [J]. Biotechnology Bulletin, 2023, 39(5): 54-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||