Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 267-277.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0722
Previous Articles Next Articles
SHEN Yun-xin1,2(), SHI Zhu-feng2, ZHOU Xu-dong1,2, LI Ming-gang3, ZHANG Qing2, FENG Lu-yao2, CHEN Qi-bin1, YANG Pei-wen2()
Received:
2022-06-15
Online:
2023-03-26
Published:
2023-04-10
SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function[J]. Biotechnology Bulletin, 2023, 39(3): 267-277.
物质种类Category | 靶基因 Target gene | 引物序列Primer sequence | 扩增长度Amplification size/bp |
---|---|---|---|
Surfactins | Sfp srfA | 5'-ATGAAGATTTACGGAATTTA-3' 5'-TTATAAAAGCTCTTCGTACG-3' 5'-ACACAGATATCAGGCAAGC-3' 5'-GTCCCATCGTTCCTTCACA-3' | 675 1 300 |
Fengycins | fenA fenB | 5'-GCTGTCCGTTCTGCTTTTTC-3' 5'-GTCGGTGCATGAAATGTACG-3' 5'-CTATAGTTTGTTGACGGCTC-3' 5'-CAGCACTGGTTCTTGTCGCA-3' | 1 000 1 600 |
Iturins | ItuA ituC ituD | 5'-ATGTATACCAGTCAATTCC-3' 5'-GATCCGAAGCTGACAATAG-3' 5'-TTCACTTTTGATCTGGCGAT-3' 5'-CGTCCGGTACATTTTCAC-3' 5'-GATGCGATCTCCTTGGATGT-3' 5'-ATCGTCATGTGCTGCTTGAG-3' | 1 047 575 647 |
Bacillomycin D | bymA bymB bymC | 5'-AAAGCGGCTCAAGAAGCGAAACCC-3' 5'-CGATTCAGCTCATCGACCAGGTAGGC-3 5'-AATAGAAGAACTGCTGGCGT-3' 5'-GCCTTCCCGACACGACACT-3' 5'-GAAGGACACGGCAGAGAGGTC-3' 5'-CACTGATGACTGTTCCTGCT-3' | 1 200 983 875 |
Table1 Primers for functional gene detection in the study
物质种类Category | 靶基因 Target gene | 引物序列Primer sequence | 扩增长度Amplification size/bp |
---|---|---|---|
Surfactins | Sfp srfA | 5'-ATGAAGATTTACGGAATTTA-3' 5'-TTATAAAAGCTCTTCGTACG-3' 5'-ACACAGATATCAGGCAAGC-3' 5'-GTCCCATCGTTCCTTCACA-3' | 675 1 300 |
Fengycins | fenA fenB | 5'-GCTGTCCGTTCTGCTTTTTC-3' 5'-GTCGGTGCATGAAATGTACG-3' 5'-CTATAGTTTGTTGACGGCTC-3' 5'-CAGCACTGGTTCTTGTCGCA-3' | 1 000 1 600 |
Iturins | ItuA ituC ituD | 5'-ATGTATACCAGTCAATTCC-3' 5'-GATCCGAAGCTGACAATAG-3' 5'-TTCACTTTTGATCTGGCGAT-3' 5'-CGTCCGGTACATTTTCAC-3' 5'-GATGCGATCTCCTTGGATGT-3' 5'-ATCGTCATGTGCTGCTTGAG-3' | 1 047 575 647 |
Bacillomycin D | bymA bymB bymC | 5'-AAAGCGGCTCAAGAAGCGAAACCC-3' 5'-CGATTCAGCTCATCGACCAGGTAGGC-3 5'-AATAGAAGAACTGCTGGCGT-3' 5'-GCCTTCCCGACACGACACT-3' 5'-GAAGGACACGGCAGAGAGGTC-3' 5'-CACTGATGACTGTTCCTGCT-3' | 1 200 983 875 |
编号 No. | 番茄枯萎病 Tomato wilt | 香蕉枯萎病 Banana fusarium wilt | 烟草枯萎病 Tobacco fusarium wilt | 烟草赤星病 Tobacco brown spot | 葡萄溃疡病 Botryosphaeria dieback | 玉米大斑病 Northern leaf blight of corn |
---|---|---|---|---|---|---|
SH-1471 | 82.0±0.01a | 74.0±0.04a | 74.0±0.02b | 79.0±0.02b | 75.0±0.01b | 78.0±0.00b |
SH-1464 | 74.0±0.01b | 73.9±0.03a | 70.0±0.02b | 67.0±0.00c | 68.0±0.02c | 77.0±0.02b |
SH-1439 | 75.0±0.01c | 74.0±0.01a | 80.0±0.04a | 81.0±0.02a | 81.0±0.02a | 81.0±0.03a |
Table 2 Inhibition rates of 3 functional bacteria/%
编号 No. | 番茄枯萎病 Tomato wilt | 香蕉枯萎病 Banana fusarium wilt | 烟草枯萎病 Tobacco fusarium wilt | 烟草赤星病 Tobacco brown spot | 葡萄溃疡病 Botryosphaeria dieback | 玉米大斑病 Northern leaf blight of corn |
---|---|---|---|---|---|---|
SH-1471 | 82.0±0.01a | 74.0±0.04a | 74.0±0.02b | 79.0±0.02b | 75.0±0.01b | 78.0±0.00b |
SH-1464 | 74.0±0.01b | 73.9±0.03a | 70.0±0.02b | 67.0±0.00c | 68.0±0.02c | 77.0±0.02b |
SH-1439 | 75.0±0.01c | 74.0±0.01a | 80.0±0.04a | 81.0±0.02a | 81.0±0.02a | 81.0±0.03a |
Fig. 3 Effects of functional strains on the spore germina-tion rates of F. oxysporum Different letters in the figure indicate significant differences in spore germination rate of the same strain at different times(P<0.05)
指标 Item | CK1 | CK2 | 处理组 Treatment group | ||
---|---|---|---|---|---|
SH-1471 | SH-1464 | SH-1439 | |||
病情指数Disease index | 89.0±0.032c | - | 15.3±0.014a | 31.7±0.027b | 32.0±0.020b |
防效Control effect/% | - | - | 83.7±0.024c | 60.7±0.009b | 59.0±0.023a |
Table 3 Control effects of fermentation broth of functional strains on fusarium wilt of tomato
指标 Item | CK1 | CK2 | 处理组 Treatment group | ||
---|---|---|---|---|---|
SH-1471 | SH-1464 | SH-1439 | |||
病情指数Disease index | 89.0±0.032c | - | 15.3±0.014a | 31.7±0.027b | 32.0±0.020b |
防效Control effect/% | - | - | 83.7±0.024c | 60.7±0.009b | 59.0±0.023a |
测定项目Measuring item | 编号No. | ||
---|---|---|---|
SH-1464 | SH-1439 | SH-1471 | |
蛋白酶Protease | + | + | + |
纤维素酶Cellulase | + | + | + |
果胶酶Pectinase | - | - | - |
解磷Pvraloximi chloridum | + | + | + |
解钾Releasing from | - | - | - |
固氮Nitrogen fixation | + | - | + |
产铁载体Excreting siderophore | + | + | + |
Table 4 Strain function test
测定项目Measuring item | 编号No. | ||
---|---|---|---|
SH-1464 | SH-1439 | SH-1471 | |
蛋白酶Protease | + | + | + |
纤维素酶Cellulase | + | + | + |
果胶酶Pectinase | - | - | - |
解磷Pvraloximi chloridum | + | + | + |
解钾Releasing from | - | - | - |
固氮Nitrogen fixation | + | - | + |
产铁载体Excreting siderophore | + | + | + |
测定项目Measuring item | 编号 No. | ||
---|---|---|---|
SH-1464 | SH-1439 | SH-1471 | |
革兰氏染色Gram staining | + | + | + |
形成芽孢Form spores | + | + | + |
菌体形态Mycelial morphology | 杆状Rhabditiform | 杆状Rhabditiform | 杆状Rhabditiform |
接触酶Catalase | + | + | + |
V-P实验V - P experiment | + | + | + |
甲基红Methyl red | - | + | - |
分解淀粉Decomposition of starch | + | + | + |
明胶液化Gelatin liquefaction | + | + | + |
柠檬酸盐Citrate | + | + | - |
最低生长温度Minimum growth temperature | 4℃ | 4℃ | 3℃ |
生长含盐量范围Growth salinity range | 0%-13% | 0%-6% | 0%-9% |
产吲哚Produce indoles | + | - | - |
产H2S Produce H2S | + | - | - |
厌氧生长Anaerobic growth | - | - | - |
甘露醇Mannitol | + | - | + |
葡萄糖Glucose | + | + | + |
Table 5 Determination of physiological and biochemical functions of the functional strains
测定项目Measuring item | 编号 No. | ||
---|---|---|---|
SH-1464 | SH-1439 | SH-1471 | |
革兰氏染色Gram staining | + | + | + |
形成芽孢Form spores | + | + | + |
菌体形态Mycelial morphology | 杆状Rhabditiform | 杆状Rhabditiform | 杆状Rhabditiform |
接触酶Catalase | + | + | + |
V-P实验V - P experiment | + | + | + |
甲基红Methyl red | - | + | - |
分解淀粉Decomposition of starch | + | + | + |
明胶液化Gelatin liquefaction | + | + | + |
柠檬酸盐Citrate | + | + | - |
最低生长温度Minimum growth temperature | 4℃ | 4℃ | 3℃ |
生长含盐量范围Growth salinity range | 0%-13% | 0%-6% | 0%-9% |
产吲哚Produce indoles | + | - | - |
产H2S Produce H2S | + | - | - |
厌氧生长Anaerobic growth | - | - | - |
甘露醇Mannitol | + | - | + |
葡萄糖Glucose | + | + | + |
[1] | 贾京珠, 张天柱. 日光温室番茄典型病害及防治措施[J]. 现代园艺, 2020, 43(1): 173-174. |
Jia JZ, Zhang TZ. Typical diseases and control measures of tomato in solar greenhouse[J]. Xiandai Hortic, 2020, 43(1): 173-174. | |
[2] | 徐艳辉, 李烨, 许向阳. 番茄枯萎病的研究进展[J]. 东北农业大学学报, 2008, 39(11): 128-134. |
Xu YH, Li Y, Xu XY. Progress in research on Fusarium wilt of tomato[J]. J Northeast Agric Univ, 2008, 39(11): 128-134. | |
[3] |
Gabe HL. Standardization of nomenclature for pathogenic races of Fusarium oxysporium f.sp. lycopersici[J]. Trans Br Mycol Soc, 1975, 64(1): 156-159.
doi: 10.1016/S0007-1536(75)80089-1 URL |
[4] | 李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3): 204-212. |
Li XL, Li YZ. Research advances in biological control of soil-borne disease[J]. Acta Prataculturae Sin, 2015, 24(3): 204-212. | |
[5] | 徐美娜, 王光华, 靳学慧. 土传病害生物防治研究进展[J]. 吉林农业科学, 2005, 30(2): 39-42. |
Xu MN, Wang GH, Jin XH. Advances in biological control of soil-borne diseases[J]. Jilin Agric Sci, 2005, 30(2): 39-42. | |
[6] | 邵秋雨, 董醇波, 韩燕峰, 等. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1): 144-152. |
Shao QY, Dong CB, Han YF, et al. Research progress in the rhizosphere microbiome of plants[J]. J Plant Nutr Fertil, 2021, 27(1): 144-152. | |
[7] |
Nkongolo KK, Narendrula-Kotha R. Advances in monitoring soil microbial community dynamic and function[J]. J Appl Genet, 2020, 61(2): 249-263.
doi: 10.1007/s13353-020-00549-5 pmid: 32062778 |
[8] | 申云鑫, 沈广材, 包玲凤, 等. 烟草青枯病病株根际土壤可培养细菌多样性特征分析[J]. 西南农业学报, 2022, 35(4): 871-878. |
Shen YX, Shen GC, Bao LF, et al. Diversity of culturable bacteria in rhizosphere soil of tobacco with bacterial wilt disease[J]. Southwest China J Agric Sci, 2022, 35(4): 871-878. | |
[9] |
Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola[J]. Can J Microbiol, 2002, 48(2): 159-169.
doi: 10.1139/w02-002 URL |
[10] | Raza W, Yang W, Shen Q. Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment[J]. J Plant Pathol, 2008, 90: 419-430. |
[11] |
El-Tarabily KA. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum-damping-off disease of cucumber[J]. Can J Bot, 2006, 84(2): 211-222.
doi: 10.1139/b05-153 URL |
[12] |
Tao CY, Li R, Xiong W, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression[J]. Microbiome, 2020, 8(1): 137.
doi: 10.1186/s40168-020-00892-z URL |
[13] | 布坎南. 伯杰细菌鉴定手册[M]. 8版. 北京: 科学出版社, 1984. |
Buchanan RE. Bergey’s manual of determinative bacteriology[M]. 8th edition. Beijing: Science Press, 1984. | |
[14] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 370-398. |
Dong XZ, Cai MY. Handbook of systematic identification of common bacteria[M]. Beijing: Science Press, 2001: 370-398. | |
[15] | 王静, 宁燕夏, 李黄维, 等. 解淀粉芽孢杆菌B6在番茄根部定殖及对番茄枯萎病盆栽防效初步研究[J]. 中国植保导刊, 2018, 38(3): 19-22, 29. |
Wang J, Ning YX, Li HW, et al. Preliminary study on colonization capacity of Bacillus amyloliquefaciens B6 in tomato roots and its controlling efficiency against tomato Fusarium wilt[J]. China Plant Prot, 2018, 38(3): 19-22, 29. | |
[16] |
Li JY, Zhao QQ, et al. Biocontrol bacteria strains Y4 and Y8 alleviate tobacco bacterial wilt disease by altering their rhizosphere soil bacteria community[J]. Rhizosphere, 2021, 19: 100390.
doi: 10.1016/j.rhisph.2021.100390 URL |
[17] |
Nadhira NE, Wahyuni ID, Addy HS. The potency of plant resistance inducers(PRIs)against bacterial wilt disease on tobacco caused by Ralstonia solanacearum[J]. IOP Conf Ser: Earth Environ Sci, 2021, 759(1): 012067.
doi: 10.1088/1755-1315/759/1/012067 |
[18] |
Shen GH, Zhang ST, Liu XJ, et al. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field[J]. Appl Microbiol Biotechnol, 2018, 102(22): 9781-9791.
doi: 10.1007/s00253-018-9347-0 pmid: 30302520 |
[19] |
Liu QW, et al. Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine[J]. Appl Microbiol Biotechnol, 2021, 105(18): 7035-7050.
doi: 10.1007/s00253-021-11542-1 pmid: 34477939 |
[20] |
Zhang CX, Zhang XX. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131[J]. World J Microbiol Biotechnol, 2014, 30(6): 1763-1774.
doi: 10.1007/s11274-014-1596-1 URL |
[21] |
Ye M, Tang X, Yang R, et al. Characteristics and application of a novel species of Bacillus: Bacillus velezensis[J]. ACS chemical biology, 2018, 13(3): 500-505.
doi: 10.1021/acschembio.7b00874 URL |
[22] |
Rabbee MF, Ali MS, Choi J, et al. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes[J]. Molecules, 2019, 24(6): 1046.
doi: 10.3390/molecules24061046 URL |
[23] | 蔡高磊, 张凡, 欧阳友香, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 2018(12): 162-167. |
Cai GL, Zhang F, Ouyang YX, et al. Research progress on Bacillus velezensis[J]. Northern Horticulture, 2018(12): 162-167. | |
[24] | 邓丽, 孙冉, 姚蒋庞, 等. 贝莱斯芽孢杆菌粗提物对金黄色葡萄球菌的抑菌机制[J]. 食品与发酵科技, 2021, 57(3): 1-9. |
Deng L, Sun R, Yao JP, et al. Antibacterial mechanism of crude extract of Bacillus velezensis against Staphylococcus aureus[J]. Food and Fermentation Science & Technology, 2021, 57(3): 1-9. | |
[25] |
宗英, 赵月菊, 刘阳, 等. 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究[J]. 核农学报, 2018, 32(2): 310-317.
doi: 10.11869/j.issn.100-8551.2018.02.0310 |
Zong Y, Zhao YJ, Liu Y, et al. Study on the Inhibitory Effect of Bacillus velezensis on Fusarium graminearum[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 310-317. | |
[26] |
徐秀倩, 吴小芹, 等. 林木根际细菌JYZ-SD5的促生抗逆性能及种类鉴定[J]. 生物技术通报, 2019, 35(3): 31-38.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0844 |
Xu XQ, Wu XQ, et al. Growth-promoting and adverse-resistant characteristics of JYZ-SD5, a tree rhizobacterium and its species identification[J]. Biotechnol Bull, 2019, 35(3): 31-38. | |
[27] | 陈倩倩, 刘波, 王阶平, 等. 芽胞杆菌FJAT-28592抗真菌脂肽的研究[J]. 农业生物技术学报, 2016, 24(2): 261-269. |
Chen QQ, Liu B, Wang JP, et al. Anti-fungal lipopetides produced by Bacillus siamensis FJAT-28592[J]. J Agric Biotechnol, 2016, 24(2): 261-269. | |
[28] | 王华笑. 解淀粉芽孢杆菌YM6对盐胁迫下玉米促生作用及机理研究[D]. 银川: 北方民族大学, 2020. |
Wang HX. Studies on the growth promotion of maize induced by Bacillus amyloliquefaciens YM6 under salt stress and its mechanisms of salt-tolerance[D]. Yinchuan: Beifang University of Nationalities, 2020. | |
[29] | 徐瑛, 郭晓农, 蔡德育. 解淀粉芽孢杆菌11B91对藜麦生长影响的初探[J]. 大麦与谷类科学, 2019, 36(5): 10-14. |
Xu Y, Guo XN, Cai DY. Preliminary study on the effects of Bacillus amyloliquefaciens 11B91 on the growth of Chenopodium quinoa willd[J]. Barley Cereal Sci, 2019, 36(5): 10-14. | |
[30] | 李晴晴, 等. 根际微生物组介导的解淀粉芽孢杆菌FH-1对水稻的促生机制[J]. 微生物学报, 2019, 59(12): 2410-2426. |
Li QQ, et al. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice[J]. Acta Microbiol Sin, 2019, 59(12): 2410-2426. | |
[31] |
汪飞, 邱光, 等. 解淀粉芽孢杆菌B1619对加工番茄幼苗促生及培育壮苗的影响[J]. 新疆农业科学, 2022, 59(5): 1252-1259.
doi: 10.6048/j.issn.1001-4330.2022.05.026 |
Wang F, Qiu G, et al. Study on application technology of Bacillus amyloliquefaciens B1619 in promoting healthy growth of tomato seedlings[J]. Xinjiang Agric Sci, 2022, 59(5): 1252-1259. |
[1] | Zhou Guowang, Li Yuhong, Zhang Yuan, Li Haitao, Liu Rongmei, Gao Jiguo. A Study of Bacillus thuringiensis Strain LTS290 Inhibiting Fusarium [J]. Biotechnology Bulletin, 2015, 31(8): 153-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||