Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 254-266.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0773
Previous Articles Next Articles
HU Li-li1,2(), LIN Bo-rong2,3, WANG Hong-hong4, CHEN Jian-song2,3, LIAO Jin-ling4(), ZHUO Kan2,3()
Received:
2022-06-25
Online:
2023-03-26
Published:
2023-04-10
HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus[J]. Biotechnology Bulletin, 2023, 39(3): 254-266.
Primer name | Primer sequence(5'-3') | Application |
---|---|---|
45363F | ATGCTGTTCACCGCACTGCT | ORF amplification |
45363R | TTATGTTCTCTTCACCTCGC | ORF amplification |
39081F | ATGGTCTTCAAAAGCGCTTC | ORF amplification |
39081R | CTAATGCTGTTTCATCATTC | ORF amplification |
38325F | ATGCGTGCCAATTTGTTGTG | ORF amplification |
38325R | TCAATTGAGGCAATCACGCT | ORF amplification |
40687F | ATGCATCTAGTTCTATTACT | ORF amplification |
40687R | TCAGTCACGTTTGGCCAACT | ORF amplification |
41828F | ATGTTCCGCTGCTCTTCCTC | ORF amplification |
41828R | TCATTCCTCCTCTCGGTTCT | ORF amplification |
49596F | ATGGGCATTGGCTTGGCCAT | ORF amplification |
49596R | TCAGACCAACGGGTACGACG | ORF amplification |
50445F | ATGGCTACATCAATTTTTGT | ORF amplification |
50445R | TCAAAAAGCGATGAATGCGA | ORF amplification |
51705F | ATGCTTTCTTGCCGTCTCCTT | ORF amplification |
51705R | TCAAATGGGATGATTCAACA | ORF amplification |
41042F | ATGTTCTTTACTGTTGCTGG | ORF amplification |
41042R | TCAAATTCGAAAGCGTTCAA | ORF amplification |
828-1305F | TGACCATGGAAATTCCTGCTCGACAATTTGG | Vector construction |
828-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCTTCCTCCTCTCGGTTCTCTC | Vector construction |
363-1305F | TGACCATGGAACAACAGGAAAAATATCAGCC | Vector construction |
363-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCTGTTCTCTTCACCTCGCCCT | Vector construction |
081-1305F | TGACCATGGAA ATCGTCAGTGCGCTTCCCCG | Vector construction |
081-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCATGCTGTTTCATCATTCCTG | Vector construction |
325-1305F | TGACCATGGAA ATTGGCATTGGCCGAACGCA | Vector construction |
325-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCATTGAGGCAATCACGCTCCT | Vector construction |
687-1305F | TGACCATGGAA GCCAGCTGTGATTCGCCAAA | Vector construction |
687-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCGTCACGTTTGGCCAACTGTT | Vector construction |
596-1305F | TGACCATGGAA GTGCAATGGCGTGTTGAGCG | Vector construction |
596-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCGACCAACGGGTACGACGCCT | Vector construction |
445-1305F | TGACCATGGAA CAATCTCCCAATGCAGATAA | Vector construction |
445-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCAAAAGCGATGAATGCGACAG | Vector construction |
705-1305F | TGACCATGGAA GAACAATACGATTCAACGGA | Vector construction |
705-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCAATGGGATGATTCAACAGGA | Vector construction |
042-1305F | TGACCATGGAA CTGGGCTGTATGAGCACAAT | Vector construction |
042-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCAATTCGAAAGCGTTCAATCA | Vector construction |
Table 1 Primers used in this study
Primer name | Primer sequence(5'-3') | Application |
---|---|---|
45363F | ATGCTGTTCACCGCACTGCT | ORF amplification |
45363R | TTATGTTCTCTTCACCTCGC | ORF amplification |
39081F | ATGGTCTTCAAAAGCGCTTC | ORF amplification |
39081R | CTAATGCTGTTTCATCATTC | ORF amplification |
38325F | ATGCGTGCCAATTTGTTGTG | ORF amplification |
38325R | TCAATTGAGGCAATCACGCT | ORF amplification |
40687F | ATGCATCTAGTTCTATTACT | ORF amplification |
40687R | TCAGTCACGTTTGGCCAACT | ORF amplification |
41828F | ATGTTCCGCTGCTCTTCCTC | ORF amplification |
41828R | TCATTCCTCCTCTCGGTTCT | ORF amplification |
49596F | ATGGGCATTGGCTTGGCCAT | ORF amplification |
49596R | TCAGACCAACGGGTACGACG | ORF amplification |
50445F | ATGGCTACATCAATTTTTGT | ORF amplification |
50445R | TCAAAAAGCGATGAATGCGA | ORF amplification |
51705F | ATGCTTTCTTGCCGTCTCCTT | ORF amplification |
51705R | TCAAATGGGATGATTCAACA | ORF amplification |
41042F | ATGTTCTTTACTGTTGCTGG | ORF amplification |
41042R | TCAAATTCGAAAGCGTTCAA | ORF amplification |
828-1305F | TGACCATGGAAATTCCTGCTCGACAATTTGG | Vector construction |
828-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCTTCCTCCTCTCGGTTCTCTC | Vector construction |
363-1305F | TGACCATGGAACAACAGGAAAAATATCAGCC | Vector construction |
363-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCTGTTCTCTTCACCTCGCCCT | Vector construction |
081-1305F | TGACCATGGAA ATCGTCAGTGCGCTTCCCCG | Vector construction |
081-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCATGCTGTTTCATCATTCCTG | Vector construction |
325-1305F | TGACCATGGAA ATTGGCATTGGCCGAACGCA | Vector construction |
325-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCATTGAGGCAATCACGCTCCT | Vector construction |
687-1305F | TGACCATGGAA GCCAGCTGTGATTCGCCAAA | Vector construction |
687-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCGTCACGTTTGGCCAACTGTT | Vector construction |
596-1305F | TGACCATGGAA GTGCAATGGCGTGTTGAGCG | Vector construction |
596-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCGACCAACGGGTACGACGCCT | Vector construction |
445-1305F | TGACCATGGAA CAATCTCCCAATGCAGATAA | Vector construction |
445-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCAAAAGCGATGAATGCGACAG | Vector construction |
705-1305F | TGACCATGGAA GAACAATACGATTCAACGGA | Vector construction |
705-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCAATGGGATGATTCAACAGGA | Vector construction |
042-1305F | TGACCATGGAA CTGGGCTGTATGAGCACAAT | Vector construction |
042-1305R | TCACACGTGTTACTTATCGTCGTCATCCTTGTAATCAATTCGAAAGCGTTCAATCA | Vector construction |
Data | Total reads/bp | Total base pairs/bp | Average length/bp | Length range/bp | N50/bp | N90/bp |
---|---|---|---|---|---|---|
Raw reads | 33 691 610 | 4 211 451 250 | - | - | - | - |
Clean reads>200 bp | 33 268 909 | 4 158 613 625 | - | - | - | - |
Transcripts | 101 595 | 80 122 468 | 789 | 200-15 754 | 1 284 | 1 131 |
Unigenes | 72 516 | 50 829 031 | 701 | 200-15 754 | 311 | 276 |
Table 2 Overview of transcriptome data of P. brachyurus transcriptome
Data | Total reads/bp | Total base pairs/bp | Average length/bp | Length range/bp | N50/bp | N90/bp |
---|---|---|---|---|---|---|
Raw reads | 33 691 610 | 4 211 451 250 | - | - | - | - |
Clean reads>200 bp | 33 268 909 | 4 158 613 625 | - | - | - | - |
Transcripts | 101 595 | 80 122 468 | 789 | 200-15 754 | 1 284 | 1 131 |
Unigenes | 72 516 | 50 829 031 | 701 | 200-15 754 | 311 | 276 |
Sequence file | NR | NT | Swiss-Prot | KEGG | PFAM | GO | KOG | ALL |
---|---|---|---|---|---|---|---|---|
Number | 31 374 | 3 314 | 24 164 | 13 521 | 29 265 | 29 729 | 19 183 | 72 516 |
Percentage/% | 43.26 | 4.57 | 33.32 | 18.64 | 40.35 | 40.99 | 26.45 | 100 |
Table 3 Statistics of proteins annotated in different database
Sequence file | NR | NT | Swiss-Prot | KEGG | PFAM | GO | KOG | ALL |
---|---|---|---|---|---|---|---|---|
Number | 31 374 | 3 314 | 24 164 | 13 521 | 29 265 | 29 729 | 19 183 | 72 516 |
Percentage/% | 43.26 | 4.57 | 33.32 | 18.64 | 40.35 | 40.99 | 26.45 | 100 |
CAZy enzyme classes | CAZy families | Number of proteins |
---|---|---|
Auxiliary activities(AA) | 8 | 64 |
Glycoside hydrolases(GH) | 56 | 1 285 |
Polysaccharide lyases(PLs) | 4 | 27 |
Carbohydrate esterases(CEs) | 9 | 280 |
Glycosyl transferases(GT) | 51 | 941 |
Carbohydrate-bind modules(CBMs) | 24 | 1 089 |
Total | 152 | 3 686 |
Table 4 Carbohydrate-active enzyme analysis in P. brachyurus
CAZy enzyme classes | CAZy families | Number of proteins |
---|---|---|
Auxiliary activities(AA) | 8 | 64 |
Glycoside hydrolases(GH) | 56 | 1 285 |
Polysaccharide lyases(PLs) | 4 | 27 |
Carbohydrate esterases(CEs) | 9 | 280 |
Glycosyl transferases(GT) | 51 | 941 |
Carbohydrate-bind modules(CBMs) | 24 | 1 089 |
Total | 152 | 3 686 |
Species | Cellulose | Xylan | Arabinogalactan | Pectin | 1,3-Glucan | Chitin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GH5 | GH45 | GH30 | GH53 | GH28 | PL3 | GH16 | GH18 | GH19 | GH20 | |||||||
Pratylenchus brachyurus | 85 | 0 | 117 | 2 | 55 | 5 | 56 | 204 | 0 | 17 | ||||||
P. thornei | 2 | 1 | 2 | 0 | 0 | 2 | 0 | 11 | 2 | 3 | ||||||
P. coffeae | 15 | 0 | 1 | 1 | 2 | 4 | 1 | 0 | 0 | 0 | ||||||
P. zeae | 8 | 0 | 1 | 0 | 0 | 1 | 1 | 5 | 0 | 2 | ||||||
P. penetrans | 21 | 0 | 3 | 1 | 4 | 5 | 0 | 10 | 0 | 6 | ||||||
Aphelenchoides besseyi | - | + | - | - | - | - | + | - | - | + | ||||||
A. ritzemabosi | 4 | 7 | 6 | 0 | 0 | 0 | 15 | 68 | 11 | 4 | ||||||
Bursaphelenchus xylophilus | 0 | 11 | 0 | 0 | 0 | 15 | 6 | 9 | 2 | 7 | ||||||
Globodera pallida | 15 | 0 | 0 | 2 | 0 | 7 | - | - | - | - | ||||||
Heterodera avenae | 16 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 1 | ||||||
H. schachtii | 24 | 0 | 2 | 3 | 1 | 9 | 0 | 57 | 0 | 5 | ||||||
Meloidogyne incognita | 21 | 0 | 6 | 0 | 2 | 30 | 0 | 3 | 2 | 2 | ||||||
M. hapla | 6 | 0 | 1 | 0 | 2 | 22 | 0 | 4 | 0 | 1 | ||||||
Caenorhabditis elegans | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 6 | 5 |
Table 5 Comparison of predicted plant/fungal cell wall degrading enzymes in P. brachyurus and other nematodes
Species | Cellulose | Xylan | Arabinogalactan | Pectin | 1,3-Glucan | Chitin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GH5 | GH45 | GH30 | GH53 | GH28 | PL3 | GH16 | GH18 | GH19 | GH20 | |||||||
Pratylenchus brachyurus | 85 | 0 | 117 | 2 | 55 | 5 | 56 | 204 | 0 | 17 | ||||||
P. thornei | 2 | 1 | 2 | 0 | 0 | 2 | 0 | 11 | 2 | 3 | ||||||
P. coffeae | 15 | 0 | 1 | 1 | 2 | 4 | 1 | 0 | 0 | 0 | ||||||
P. zeae | 8 | 0 | 1 | 0 | 0 | 1 | 1 | 5 | 0 | 2 | ||||||
P. penetrans | 21 | 0 | 3 | 1 | 4 | 5 | 0 | 10 | 0 | 6 | ||||||
Aphelenchoides besseyi | - | + | - | - | - | - | + | - | - | + | ||||||
A. ritzemabosi | 4 | 7 | 6 | 0 | 0 | 0 | 15 | 68 | 11 | 4 | ||||||
Bursaphelenchus xylophilus | 0 | 11 | 0 | 0 | 0 | 15 | 6 | 9 | 2 | 7 | ||||||
Globodera pallida | 15 | 0 | 0 | 2 | 0 | 7 | - | - | - | - | ||||||
Heterodera avenae | 16 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 1 | ||||||
H. schachtii | 24 | 0 | 2 | 3 | 1 | 9 | 0 | 57 | 0 | 5 | ||||||
Meloidogyne incognita | 21 | 0 | 6 | 0 | 2 | 30 | 0 | 3 | 2 | 2 | ||||||
M. hapla | 6 | 0 | 1 | 0 | 2 | 22 | 0 | 4 | 0 | 1 | ||||||
Caenorhabditis elegans | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 6 | 5 |
Caenorhab- ditis elegans | Meloidogyne incognita | Meloidog-yne hapla | Globodera pallida | Heterode-ra avenae | Bursaphelenc-hus xylophilus | Aphelencho-ides besseyi | Pratylenc- hus coffeae | Pratylench- us penetrans | Pratylenchus brachyurus | |
---|---|---|---|---|---|---|---|---|---|---|
Small RNA biosynthesis | 9 | 7 | 6 | 6 | 6 | 8 | 7 | 6 | 7 | 7 |
dsRNA uptake and spreading | 13 | 4 | 4 | 4 | 4 | 6 | 6 | 7 | 4 | 7 |
AGOs and RISC | 32 | 9 | 7 | 9 | 8 | 12 | 27 | 14 | 7 | 25 |
RNAi inhibitors | 9 | 2 | 3 | 2 | 3 | 2 | 5 | 1 | 2 | 6 |
Nuclear effectors | 15 | 6 | 7 | 5 | 8 | 9 | 12 | 6 | 7 | 9 |
Total | 78 | 28 | 27 | 26 | 29 | 37 | 57 | 34 | 27 | 54 |
Table 6 Proteins involved in the RNAi pathway of P. brachyurus compared with other nematodes
Caenorhab- ditis elegans | Meloidogyne incognita | Meloidog-yne hapla | Globodera pallida | Heterode-ra avenae | Bursaphelenc-hus xylophilus | Aphelencho-ides besseyi | Pratylenc- hus coffeae | Pratylench- us penetrans | Pratylenchus brachyurus | |
---|---|---|---|---|---|---|---|---|---|---|
Small RNA biosynthesis | 9 | 7 | 6 | 6 | 6 | 8 | 7 | 6 | 7 | 7 |
dsRNA uptake and spreading | 13 | 4 | 4 | 4 | 4 | 6 | 6 | 7 | 4 | 7 |
AGOs and RISC | 32 | 9 | 7 | 9 | 8 | 12 | 27 | 14 | 7 | 25 |
RNAi inhibitors | 9 | 2 | 3 | 2 | 3 | 2 | 5 | 1 | 2 | 6 |
Nuclear effectors | 15 | 6 | 7 | 5 | 8 | 9 | 12 | 6 | 7 | 9 |
Total | 78 | 28 | 27 | 26 | 29 | 37 | 57 | 34 | 27 | 54 |
Protein/Gene name | Accession number | Species | Number of unigenes | Best E-value | Bset Identity/% | Bit score | Alignment length/bp |
---|---|---|---|---|---|---|---|
14-3-3/14-3-3b product | AAL40719 | Meloidogyne incognita | 15 | 1.34e-138 | 81.12 | 386 | 233 |
10A06 | ACU12489 | Heterodera schachtii | 0 | ||||
16D10 | Q06JG6 | Meloidogyne incognita | 0 | ||||
19C07 | AAO85458 | Heterodera schachtii | 0 | ||||
Annexin 4C10 | AAN32888 | Heterodera glycines | 6 | 2.15e-96 | 45.82 | 285 | 323 |
Calreticulin(Mi-crt-1) | AAL40720 | Meloidogyne incognita | 6 | 1.06e-170 | 82.77 | 481 | 354 |
Cysteine protease(Mi-cpl-1) | CAD89795 | Meloidogyne incognita | 54 | 0 | 80.25 | 561 | 324 |
Fatty acid retinoid binding(Gp-far-1) | CAA70477 | Globodera pallida | 9 | 2.73e-83 | 75.46 | 241 | 163 |
Glutathione-S-transferase(Mi-gsts-1) | ABN64198 | Meloidogyne incognita | 74 | 9.84e-92 | 60.70 | 263 | 201 |
Peroxiredoxin(Gr-TpX) | CAB48391 | Globodera rostochiensis | 9 | 9.76e-122 | 80.81 | 339 | 198 |
RAN-BP-like(Gr-A18) | CAC21848 | Globodera rostochiensis | 9 | 4.91e-24 | 37.21 | 88.2 | 129 |
RAN-BP-like(Gp-rbp-1) | AAV34698 | Globodera pallida | 14 | 1.07e-140 | 81.66 | 403 | 229 |
Glutathione peroxidase | CAD38523 | Globodera rostochiensis | 0 | ||||
Transthyretin-like protein(Rs-ttl-1, Rs-ttl-2, Rs-ttl-3, Rs-ttl-4) | CAM84510 | Radopholus similis | 58 | 2.27e-64 | 78.40 | 190 | 125 |
Ubiquitin extension protein(Hs-ubi-1) | AAP30081 | Heterodera schachtii | 26 | 2.96e-50 | 94.74 | 149 | 76 |
Venom allergen-like protein(Vap-1) | AAK60209 | Heterodera glycines | 4 | 2.41e-33 | 50.00 | 111 | 118 |
Venom allergen-like protein(Mi-mps-1) | AAD01511 | Meloidogyne incognita | 0 | ||||
7E12 | AAQ10021 | Meloidogyne incognita | 0 | ||||
Acid phosphatase | AAN08587 | Meloidogyne incognita | 36 | 0 | 56.89 | 523 | 450 |
Chitinase | AAN14978 | Heterodera glycines | 15 | 6.17e-69 | 40.41 | 219 | 344 |
Chorismate mutase 1 | ABB02655 | Meloidogyne arenaria | 1 | 8.78e-12 | 34.34 | 53.5 | 99 |
CLE peptide | AAO33474 | Heterodera glycines | 0 | ||||
ERp99 | AAG21337 | Heterodera glycines | 9 | 3.33e-54 | 75.81 | 177 | 124 |
Galectin | AAB61596 | Globodera rostochiensis | 27 | 1.16e-75 | 60.87 | 223 | 161 |
Map-1 | CAC27774 | Meloidogyne incognita | 0 | ||||
SPRYSEC(RBP-1) | CAM33004 | Globodera pallida | 2 | 3.09e-15 | 45.16 | 59.3 | 62 |
RING-H2 zinc finger protein | AAP30834 | Heterodera glycines | 0 | ||||
SKP1-like protein | AAP30763 | Heterodera glycines | 8 | 3.98e-30 | 35.36 | 105 | 181 |
SXP/RAL-2 | CAB75701 | Globodera rostochiensis | 4 | 4.87e-17 | 32.74 | 65.5 | 113 |
Ubiquitin extension protein | AAO33478 | Heterodera glycines | 1 | 2.03e-10 | 33.72 | 50.4 | 86 |
Venom allergen-like protein(VAP-1) | AEL16453 | Globodera rostochiensis | 8 | 1.24e-83 | 68.68 | 243 | 182 |
Effector protein GPP | ARC52277 | Meloidogyne graminicola | 1 | 3.99e-17 | 33.33 | 70.1 | 150 |
Secretory protein(MJ-NULG1a) | AFB73917 | Meloidogyne javanica | 0 | ||||
Cellulase(β-1,4-endo glucanase) | CAJ77137 | Meloidogyne javanica | 30 | 5.15e-129 | 72.13 | 380 | 302 |
Table 7 Homology analysis between P. brachyurus and known plant-parasitic nematodes
Protein/Gene name | Accession number | Species | Number of unigenes | Best E-value | Bset Identity/% | Bit score | Alignment length/bp |
---|---|---|---|---|---|---|---|
14-3-3/14-3-3b product | AAL40719 | Meloidogyne incognita | 15 | 1.34e-138 | 81.12 | 386 | 233 |
10A06 | ACU12489 | Heterodera schachtii | 0 | ||||
16D10 | Q06JG6 | Meloidogyne incognita | 0 | ||||
19C07 | AAO85458 | Heterodera schachtii | 0 | ||||
Annexin 4C10 | AAN32888 | Heterodera glycines | 6 | 2.15e-96 | 45.82 | 285 | 323 |
Calreticulin(Mi-crt-1) | AAL40720 | Meloidogyne incognita | 6 | 1.06e-170 | 82.77 | 481 | 354 |
Cysteine protease(Mi-cpl-1) | CAD89795 | Meloidogyne incognita | 54 | 0 | 80.25 | 561 | 324 |
Fatty acid retinoid binding(Gp-far-1) | CAA70477 | Globodera pallida | 9 | 2.73e-83 | 75.46 | 241 | 163 |
Glutathione-S-transferase(Mi-gsts-1) | ABN64198 | Meloidogyne incognita | 74 | 9.84e-92 | 60.70 | 263 | 201 |
Peroxiredoxin(Gr-TpX) | CAB48391 | Globodera rostochiensis | 9 | 9.76e-122 | 80.81 | 339 | 198 |
RAN-BP-like(Gr-A18) | CAC21848 | Globodera rostochiensis | 9 | 4.91e-24 | 37.21 | 88.2 | 129 |
RAN-BP-like(Gp-rbp-1) | AAV34698 | Globodera pallida | 14 | 1.07e-140 | 81.66 | 403 | 229 |
Glutathione peroxidase | CAD38523 | Globodera rostochiensis | 0 | ||||
Transthyretin-like protein(Rs-ttl-1, Rs-ttl-2, Rs-ttl-3, Rs-ttl-4) | CAM84510 | Radopholus similis | 58 | 2.27e-64 | 78.40 | 190 | 125 |
Ubiquitin extension protein(Hs-ubi-1) | AAP30081 | Heterodera schachtii | 26 | 2.96e-50 | 94.74 | 149 | 76 |
Venom allergen-like protein(Vap-1) | AAK60209 | Heterodera glycines | 4 | 2.41e-33 | 50.00 | 111 | 118 |
Venom allergen-like protein(Mi-mps-1) | AAD01511 | Meloidogyne incognita | 0 | ||||
7E12 | AAQ10021 | Meloidogyne incognita | 0 | ||||
Acid phosphatase | AAN08587 | Meloidogyne incognita | 36 | 0 | 56.89 | 523 | 450 |
Chitinase | AAN14978 | Heterodera glycines | 15 | 6.17e-69 | 40.41 | 219 | 344 |
Chorismate mutase 1 | ABB02655 | Meloidogyne arenaria | 1 | 8.78e-12 | 34.34 | 53.5 | 99 |
CLE peptide | AAO33474 | Heterodera glycines | 0 | ||||
ERp99 | AAG21337 | Heterodera glycines | 9 | 3.33e-54 | 75.81 | 177 | 124 |
Galectin | AAB61596 | Globodera rostochiensis | 27 | 1.16e-75 | 60.87 | 223 | 161 |
Map-1 | CAC27774 | Meloidogyne incognita | 0 | ||||
SPRYSEC(RBP-1) | CAM33004 | Globodera pallida | 2 | 3.09e-15 | 45.16 | 59.3 | 62 |
RING-H2 zinc finger protein | AAP30834 | Heterodera glycines | 0 | ||||
SKP1-like protein | AAP30763 | Heterodera glycines | 8 | 3.98e-30 | 35.36 | 105 | 181 |
SXP/RAL-2 | CAB75701 | Globodera rostochiensis | 4 | 4.87e-17 | 32.74 | 65.5 | 113 |
Ubiquitin extension protein | AAO33478 | Heterodera glycines | 1 | 2.03e-10 | 33.72 | 50.4 | 86 |
Venom allergen-like protein(VAP-1) | AEL16453 | Globodera rostochiensis | 8 | 1.24e-83 | 68.68 | 243 | 182 |
Effector protein GPP | ARC52277 | Meloidogyne graminicola | 1 | 3.99e-17 | 33.33 | 70.1 | 150 |
Secretory protein(MJ-NULG1a) | AFB73917 | Meloidogyne javanica | 0 | ||||
Cellulase(β-1,4-endo glucanase) | CAJ77137 | Meloidogyne javanica | 30 | 5.15e-129 | 72.13 | 380 | 302 |
Protein number | Length /aa | Best matches in Nr | Species | E-value | Query cover/% | Identity /% | Accession Number |
---|---|---|---|---|---|---|---|
c40687_g1 | 184 | Translocon associated protein delta subunit | Pratylenchus goodeyi | 4e-80 | 93 | 67 | AHB64350 |
c56651_g1 | 136 | Beta-1,4-endoglucanase | Aphelenchus avenae | 4e-41 | 96 | 51 | BAI44493 |
c40783_g1 | 638 | Matrix metalloproteinase | Globodera rostochiensis | 0.0 | 87 | 51 | AAR11447 |
c49911_g2 | 481 | Beta-1,4-endoglucanase | Pratylenchus penetrans | 0.0 | 92 | 75 | BAB68522 |
c23527_g1 | 78 | Transthyretin-like protein 4 | Meloidogyne javanica | 3e-12 | 76 | 52 | AKV89653 |
c61136_g1 | 88 | Beta-1,4-endoglucanase precursor | Globodera rostochiensis | 1e-16 | 64 | 56 | AAC48325 |
c44079_g2 | 119 | Beta-1,4-endoglucanase | Pratylenchus goodeyi | 2e-34 | 57 | 81 | AJD14760 |
c40872_g1 | 241 | Lysozyme | Ditylenchus destructor | 2e-07 | 79 | 28 | ADW77529 |
c50445_g1 | 493 | Acid phosphatase | Heterodera avenae | 1e-125 | 90 | 43 | AFQ55439 |
c45880_g1 | 457 | Acid phosphatase | Heterodera avenae | 2e-94 | 87 | 41 | AFQ55439 |
c45363_g1 | 266 | Secreted glutathione peroxidase | Globodera rostochiensis | 4e-142 | 95 | 75 | AHW98769 |
c35087_g1 | 383 | GHF5 endo-1,4-beta-glucanase precursor | Radopholus similis | 7e-107 | 78 | 53 | ABV54446 |
c27617_g1 | 209 | C-type lectin | Rotylenchulus reniformis | 8e-13 | 75 | 31 | AFM37305 |
c50084_g1 | 268 | Secreted glutathione peroxidase | Heterodera cruciferae | 3e-114 | 76 | 72 | AJE31857 |
c41828_g1 | 318 | SXP/RAL-2 protein | Meloidogyne incognita | 1e-23 | 43 | 36 | AAR35032 |
c44657_g1 | 420 | Cathepsin L-like cysteine proteinase | Ditylenchus destructor | 0.0 | 93 | 67 | ACT35690 |
c41337_g1 | 476 | Serine carboxypeptidases | Radopholus similis | 0.0 | 94 | 58 | AIC75882 |
c35220_g1 | 242 | Glutathione peroxidases | Ditylenchus destructor | 5e-129 | 92 | 76 | AFJ15101 |
c44519_g1 | 467 | Acid phosphatase | Heterodera avenae | 2e-90 | 97 | 36 | AFQ55439 |
c39081_g1 | 240 | Putative amphid protein | Globodera rostochiensis | 2e-37 | 66 | 43 | CAB66341 |
c43667_g1 | 176 | Trans-thyretin-related family domain family member | Aphelenchoides besseyi | 2e-46 | 75 | 49 | AGA60310 |
c47241_g1 | 445 | Acid phosphatase | Heterodera avenae | 4e-95 | 84 | 43 | AFQ55439 |
c30155_g1 | 175 | Endoglucanase-2 precursor | Pratylenchus vulnus | 4e-38 | 94 | 45 | CDM79919 |
c61123_g1 | 100 | Polygalacturonase | Meloidogyne incognita | 2e-19 | 91 | 47 | AAM28240 |
c50692_g1 | 664 | Heat shock protein 70-C | Ditylenchus destructor | 0.0 | 99 | 90 | AFL69919 |
c43858_g1 | 423 | Acid phosphatase | Heterodera avenae | 2e-70 | 95 | 35 | AFQ55439 |
c26240_g1 | 156 | Putative esophageal gland cell secretory protein 21 | Meloidogyne incognita | 7e-28 | 99 | 37 | AAN08587 |
c30506_g1 | 142 | Transthyretin-like protein 2 precursor | Radopholus similis | 7e-43 | 79 | 58 | CAM845111 |
c50669_g2 | 288 | Serine proteinase | Meloidogyne incognita | 8e-92 | 95 | 50 | ABQ02009 |
c45343_g9 | 139 | Hypothetical esophageal gland cell secretory protein 11 | Heterodera glycines | 6e-46 | 87 | 65 | AAF76925 |
c45839_g1 | 357 | Biotin synthase | Heterodera glycines | 0.0 | 91 | 74 | ACZ34281 |
c65044_g1 | 165 | Expansin B | Globodera tabacum | 7e-16 | 32 | 73 | AEU04757 |
c38872_g2 | 372 | Expansin B | Meloidogyne javanica | 2e-09 | 30 | 35 | ADX36366 |
c49407_g1 | 213 | VAP1 protein | Globodera rostochiensis | 6e-86 | 96 | 62 | AEL16453 |
c16433_g1 | 257 | C-type lectin | Rotylenchulus reniformis | 2e-11 | 77 | 31 | AFM37307 |
c49384_g1 | 404 | Cathepsin L-like cysteine proteinase | Ditylenchus destructor | 7e-153 | 99 | 58 | ACT35690 |
c25396_g1 | 154 | Acid phosphatase | Heterodera avenae | 2e-42 | 94 | 51 | AFQ55439 |
c40020_g1 | 158 | Trans-thyretin-related family domain family member | Aphelenchoides besseyi | 2e-46 | 86 | 50 | AGA60310 |
c19843_g1 | 108 | Gland-specific protein g4e02 | Heterodera glycines | 3e-16 | 51 | 60 | AAO33473 |
c51705_g1 | 525 | Serine carboxypeptidases | Radopholus similis | 0.0 | 87 | 83 | AIC75882 |
c44522_g1 | 272 | Venom allergen-like protein vap-2 | Ditylenchus destructor | 1e-48 | 72 | 45 | ADC35399 |
c41042_g1 | 392 | Putative esophageal gland cell secretory protein 26 | Meloidogyne incognita | 6e-105 | 61 | 62 | AAN15806 |
c31126_g1 | 213 | Matrix metalloproteinase | Globodera rostochiensis | 6e-25 | 78 | 37 | AAR11447 |
c49596_g1 | 394 | Putative cathepsin L protease | Meloidogyne incognita | 0.0 | 97 | 70 | CAD89795 |
c29740_g1 | 238 | Dual oxidase | Meloidogyne incognita | 2e-122 | 82 | 91 | AAY84711 |
c38325_g1 | 151 | Transthyretin-like protein 1 precursor | Radopholus similis | 9e-54 | 82 | 73 | CAM84510 |
c42933_g1 | 363 | Arginine kinase | Heterodera glycines | 0.0 | 86 | 87 | AAO49799 |
c47148_g1 | 610 | Acetylcholinesterase 3 | Ditylenchus destructor | 0.0 | 95 | 70 | ABQ58115 |
c51959_g1 | 673 | Heat shock protein 70-C | Ditylenchus destructor | 0.0 | 94 | 90 | AFL69919 |
c45122_g1 | 84 | Transthyretin-like protein 4 | Meloidogyne javanica | 1e-19 | 84 | 58 | AKV89653 |
c40147_g1 | 415 | VAP1 protein | Globodera rostochiensis | 7e-56 | 41 | 52 | AEL16453 |
Table 8 Screeing of putative effectors in P. brachyurus transcriptome
Protein number | Length /aa | Best matches in Nr | Species | E-value | Query cover/% | Identity /% | Accession Number |
---|---|---|---|---|---|---|---|
c40687_g1 | 184 | Translocon associated protein delta subunit | Pratylenchus goodeyi | 4e-80 | 93 | 67 | AHB64350 |
c56651_g1 | 136 | Beta-1,4-endoglucanase | Aphelenchus avenae | 4e-41 | 96 | 51 | BAI44493 |
c40783_g1 | 638 | Matrix metalloproteinase | Globodera rostochiensis | 0.0 | 87 | 51 | AAR11447 |
c49911_g2 | 481 | Beta-1,4-endoglucanase | Pratylenchus penetrans | 0.0 | 92 | 75 | BAB68522 |
c23527_g1 | 78 | Transthyretin-like protein 4 | Meloidogyne javanica | 3e-12 | 76 | 52 | AKV89653 |
c61136_g1 | 88 | Beta-1,4-endoglucanase precursor | Globodera rostochiensis | 1e-16 | 64 | 56 | AAC48325 |
c44079_g2 | 119 | Beta-1,4-endoglucanase | Pratylenchus goodeyi | 2e-34 | 57 | 81 | AJD14760 |
c40872_g1 | 241 | Lysozyme | Ditylenchus destructor | 2e-07 | 79 | 28 | ADW77529 |
c50445_g1 | 493 | Acid phosphatase | Heterodera avenae | 1e-125 | 90 | 43 | AFQ55439 |
c45880_g1 | 457 | Acid phosphatase | Heterodera avenae | 2e-94 | 87 | 41 | AFQ55439 |
c45363_g1 | 266 | Secreted glutathione peroxidase | Globodera rostochiensis | 4e-142 | 95 | 75 | AHW98769 |
c35087_g1 | 383 | GHF5 endo-1,4-beta-glucanase precursor | Radopholus similis | 7e-107 | 78 | 53 | ABV54446 |
c27617_g1 | 209 | C-type lectin | Rotylenchulus reniformis | 8e-13 | 75 | 31 | AFM37305 |
c50084_g1 | 268 | Secreted glutathione peroxidase | Heterodera cruciferae | 3e-114 | 76 | 72 | AJE31857 |
c41828_g1 | 318 | SXP/RAL-2 protein | Meloidogyne incognita | 1e-23 | 43 | 36 | AAR35032 |
c44657_g1 | 420 | Cathepsin L-like cysteine proteinase | Ditylenchus destructor | 0.0 | 93 | 67 | ACT35690 |
c41337_g1 | 476 | Serine carboxypeptidases | Radopholus similis | 0.0 | 94 | 58 | AIC75882 |
c35220_g1 | 242 | Glutathione peroxidases | Ditylenchus destructor | 5e-129 | 92 | 76 | AFJ15101 |
c44519_g1 | 467 | Acid phosphatase | Heterodera avenae | 2e-90 | 97 | 36 | AFQ55439 |
c39081_g1 | 240 | Putative amphid protein | Globodera rostochiensis | 2e-37 | 66 | 43 | CAB66341 |
c43667_g1 | 176 | Trans-thyretin-related family domain family member | Aphelenchoides besseyi | 2e-46 | 75 | 49 | AGA60310 |
c47241_g1 | 445 | Acid phosphatase | Heterodera avenae | 4e-95 | 84 | 43 | AFQ55439 |
c30155_g1 | 175 | Endoglucanase-2 precursor | Pratylenchus vulnus | 4e-38 | 94 | 45 | CDM79919 |
c61123_g1 | 100 | Polygalacturonase | Meloidogyne incognita | 2e-19 | 91 | 47 | AAM28240 |
c50692_g1 | 664 | Heat shock protein 70-C | Ditylenchus destructor | 0.0 | 99 | 90 | AFL69919 |
c43858_g1 | 423 | Acid phosphatase | Heterodera avenae | 2e-70 | 95 | 35 | AFQ55439 |
c26240_g1 | 156 | Putative esophageal gland cell secretory protein 21 | Meloidogyne incognita | 7e-28 | 99 | 37 | AAN08587 |
c30506_g1 | 142 | Transthyretin-like protein 2 precursor | Radopholus similis | 7e-43 | 79 | 58 | CAM845111 |
c50669_g2 | 288 | Serine proteinase | Meloidogyne incognita | 8e-92 | 95 | 50 | ABQ02009 |
c45343_g9 | 139 | Hypothetical esophageal gland cell secretory protein 11 | Heterodera glycines | 6e-46 | 87 | 65 | AAF76925 |
c45839_g1 | 357 | Biotin synthase | Heterodera glycines | 0.0 | 91 | 74 | ACZ34281 |
c65044_g1 | 165 | Expansin B | Globodera tabacum | 7e-16 | 32 | 73 | AEU04757 |
c38872_g2 | 372 | Expansin B | Meloidogyne javanica | 2e-09 | 30 | 35 | ADX36366 |
c49407_g1 | 213 | VAP1 protein | Globodera rostochiensis | 6e-86 | 96 | 62 | AEL16453 |
c16433_g1 | 257 | C-type lectin | Rotylenchulus reniformis | 2e-11 | 77 | 31 | AFM37307 |
c49384_g1 | 404 | Cathepsin L-like cysteine proteinase | Ditylenchus destructor | 7e-153 | 99 | 58 | ACT35690 |
c25396_g1 | 154 | Acid phosphatase | Heterodera avenae | 2e-42 | 94 | 51 | AFQ55439 |
c40020_g1 | 158 | Trans-thyretin-related family domain family member | Aphelenchoides besseyi | 2e-46 | 86 | 50 | AGA60310 |
c19843_g1 | 108 | Gland-specific protein g4e02 | Heterodera glycines | 3e-16 | 51 | 60 | AAO33473 |
c51705_g1 | 525 | Serine carboxypeptidases | Radopholus similis | 0.0 | 87 | 83 | AIC75882 |
c44522_g1 | 272 | Venom allergen-like protein vap-2 | Ditylenchus destructor | 1e-48 | 72 | 45 | ADC35399 |
c41042_g1 | 392 | Putative esophageal gland cell secretory protein 26 | Meloidogyne incognita | 6e-105 | 61 | 62 | AAN15806 |
c31126_g1 | 213 | Matrix metalloproteinase | Globodera rostochiensis | 6e-25 | 78 | 37 | AAR11447 |
c49596_g1 | 394 | Putative cathepsin L protease | Meloidogyne incognita | 0.0 | 97 | 70 | CAD89795 |
c29740_g1 | 238 | Dual oxidase | Meloidogyne incognita | 2e-122 | 82 | 91 | AAY84711 |
c38325_g1 | 151 | Transthyretin-like protein 1 precursor | Radopholus similis | 9e-54 | 82 | 73 | CAM84510 |
c42933_g1 | 363 | Arginine kinase | Heterodera glycines | 0.0 | 86 | 87 | AAO49799 |
c47148_g1 | 610 | Acetylcholinesterase 3 | Ditylenchus destructor | 0.0 | 95 | 70 | ABQ58115 |
c51959_g1 | 673 | Heat shock protein 70-C | Ditylenchus destructor | 0.0 | 94 | 90 | AFL69919 |
c45122_g1 | 84 | Transthyretin-like protein 4 | Meloidogyne javanica | 1e-19 | 84 | 58 | AKV89653 |
c40147_g1 | 415 | VAP1 protein | Globodera rostochiensis | 7e-56 | 41 | 52 | AEL16453 |
Protein number | Length/aa | Best matches in Nr |
---|---|---|
c41828_g1 | 318 | SXP/RAL-2 protein |
c38325_g1 | 151 | Transthyretin-like protein 1 precursor |
c45363_g1 | 266 | Secreted glutathione peroxidase |
c51705_g1 | 525 | Serine carboxypeptidases |
c40687_g1 | 184 | Translocon associated protein delta subunit |
c50445_g1 | 493 | Acid phosphatase |
c41042_g1 | 392 | Putative esophageal gland cell secretory protein 26 |
c39081_g1 | 240 | Putative amphid protein |
c49596_g1 | 394 | Putative cathepsin L protease |
Table 9 Putative effectors selected for testing potential abilities in suppressing programmed cell death in Nicotiana benthamiana
Protein number | Length/aa | Best matches in Nr |
---|---|---|
c41828_g1 | 318 | SXP/RAL-2 protein |
c38325_g1 | 151 | Transthyretin-like protein 1 precursor |
c45363_g1 | 266 | Secreted glutathione peroxidase |
c51705_g1 | 525 | Serine carboxypeptidases |
c40687_g1 | 184 | Translocon associated protein delta subunit |
c50445_g1 | 493 | Acid phosphatase |
c41042_g1 | 392 | Putative esophageal gland cell secretory protein 26 |
c39081_g1 | 240 | Putative amphid protein |
c49596_g1 | 394 | Putative cathepsin L protease |
Fig. 3 Suppression of Gpa2/RBP-1-induced cell programming death by putative effectors A: Necrotic spot of candidate effectors in the assay of suppressing cell death triggered by Gpa2/RBP-1. The necrotic spot was scored, and photographs were taken at 5 d after the last infiltration. The numbers in parentheses indicate the number of infiltrated sites showing cell-death symptoms divided by the total number of infiltrated sites. Two independent assays were performed. B: Suppression or no suppression of PCD was shown by examples of c39081_g1 and c41042_g1. N. benthamiana leaves were infiltrated with buffer or Agrobacterium tumefaciens cells carrying c39081_g1 or c41042_g1, CEP12 and pCAMBIA1305:flag, followed 24 h later with A. tumefaciens carrying RBP-1/Gpa2. Protein expression was confirmed by Western blot
[1] |
Haegeman A, Mantelin S, Jones JT, et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene, 2012, 492(1): 19-31.
doi: 10.1016/j.gene.2011.10.040 pmid: 22062000 |
[2] |
Niu JH, Liu P, Liu Q, et al. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism[J]. Sci Rep, 2016, 6: 19443.
doi: 10.1038/srep19443 pmid: 26797310 |
[3] |
Chen JS, Lin BR, Huang QL, et al. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism[J]. PLoS Pathog, 2017, 13(4): e1006301.
doi: 10.1371/journal.ppat.1006301 URL |
[4] |
Zhuo K, Chen JS, Lin BR, et al. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants[J]. Mol Plant Pathol, 2017, 18(1): 45-54.
doi: 10.1111/mpp.12374 pmid: 26808010 |
[5] |
Chronis D, Chen SY, Lu SW, et al. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism[J]. Plant J, 2013, 74(2): 185-196.
doi: 10.1111/tpj.2013.74.issue-2 URL |
[6] |
Mei YY, Wright KM, Haegeman A, et al. The Globodera pallida SPRYSEC effector Gp SPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network[J]. Front Plant Sci, 2018, 9: 1019.
doi: 10.3389/fpls.2018.01019 URL |
[7] |
Jones JT, Haegeman A, Danchin EGJ, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961.
doi: 10.1111/mpp.12057 pmid: 23809086 |
[8] | Bucki P, Qing X, Castillo P, et al. The genus Pratylenchus(Nematoda: Pratylenchidae)in Israel: from taxonomy to control practices[J]. Plants(Basel), 2020, 9(11): 1475. |
[9] | Kathiresan T and Mehta U. Penetration, multiplication and histopathological response of lesion nematode Pratylenchus zeae in resistant and susceptible sugarcane clones[J]. International Journal of Nematology, 2002, 12(2): 189-197. |
[10] | Castillo P, Vovlas N. Pratylenchus(Nematoda: Pratylenchidae): Diagnosis, obiology, pathogenicity and management[M]. Boston: Brill, 2007. |
[11] |
Jones MGK, Fosu-Nyarko J. Molecular biology of root lesion nematodes(Pratylenchuss pp.)and their interaction with host plants[J]. Ann Appl Biol, 2014, 164(2): 163-181.
doi: 10.1111/aab.12105 URL |
[12] |
Haegeman A, Joseph S, Gheysen G. Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology[J]. Mol Biochem Parasitol, 2011, 178(1/2): 7-14.
doi: 10.1016/j.molbiopara.2011.04.001 URL |
[13] |
Nicol P, Gill R, Fosu-Nyarko J, et al. De novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing[J]. Int J Parasitol, 2012, 42(3): 225-237.
doi: 10.1016/j.ijpara.2011.11.010 pmid: 22309969 |
[14] |
Vieira P, den Akker SEV, Verma R, et al. The Pratylenchus penetrans transcriptome as a source for the development of alternative control strategies: mining for putative genes involved in parasitism and evaluation of in planta RNAi[J]. PLoS One, 2015, 10(12): e0144674.
doi: 10.1371/journal.pone.0144674 URL |
[15] |
Fosu-Nyarko J, Tan JACH, Gill R, et al. De novo analysis of the transcriptome of Pratylenchus Zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism[J]. Mol Plant Pathol, 2016, 17(4): 532-552.
doi: 10.1111/mpp.12301 pmid: 26292651 |
[16] |
Maier TR, Hewezi T, Peng JQ, et al. Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification[J]. Mol Plant Microbe Interact, 2013, 26(1): 31-35.
doi: 10.1094/MPMI-05-12-0121-FI URL |
[17] |
Vieira P, Maier TR, den Akker SEV, et al. Identification of candidate effector genes of Pratylenchus penetrans[J]. Mol Plant Pathol, 2018, 19(8): 1887-1907.
doi: 10.1111/mpp.2018.19.issue-8 URL |
[18] |
Vieira P, Shao J, Vijayapalani P, et al. A new esophageal gland transcriptome reveals signatures of large scale de novo effector birth in the root lesion nematode Pratylenchus penetrans[J]. BMC Genomics, 2020, 21(1): 738.
doi: 10.1186/s12864-020-07146-0 pmid: 33096989 |
[19] |
Fanelli E, Troccoli A, Picardi E, et al. Molecular characterization and functional analysis of fourβ-1, 4-endoglucanases from the root-lesion nematodePratylenchus vulnus[J]. Plant Pathol, 2014, 63(6): 1436-1445.
doi: 10.1111/ppa.2014.63.issue-6 URL |
[20] |
Joseph S, Gheysen G, Subramaniam K. RNA interference in Pratylenchus coffeae: knock down of Pc-pat-10 and Pc-unc-87 impedes migration[J]. Mol Biochem Parasitol, 2012, 186(1): 51-59.
doi: 10.1016/j.molbiopara.2012.09.009 URL |
[21] |
Tan JACH, Jones MGK, Fosu-Nyarko J. Gene silencing in root lesion nematodes(Pratylenchus spp.)significantly reduces reproduction in a plant host[J]. Exp Parasitol, 2013, 133(2): 166-178.
doi: 10.1016/j.exppara.2012.11.011 pmid: 23201220 |
[22] | 王宏洪. 中国短体亚科线虫鉴定及分子系统学研究[D]. 广州: 华南农业大学, 2014. |
Wang H H. Identification and molecular systematics of Pratylenchinae(Nematoda: Pratylenchidae)in China[D]. Gaungzhou: South China Agricultural University, 2014. | |
[23] | 章淑玲, 王宏毅, 金亮. 寄生台湾春兰的短体线虫种类鉴定[J]. 热带作物学报, 2013, 34(12): 2463-2466. |
Zhang SL, Wang HY, Jin L. Identification of root lesion Nematodes in Cymbidium goeringii from Taiwan[J]. Chin J Trop Crops, 2013, 34(12): 2463-2466. | |
[24] | 赵立荣, 崔汝强, 王金成, 等. 从尼日利亚进境的芋头中截获最短尾短体线虫[J]. 植物检疫, 2011, 25(4): 35-38. |
Zhao LR, Cui RQ, Wang JC, et al. Pratylenchus brachyurus was intercepted in Colocasia sp. from Nigeria[J]. Plant Quar, 2011, 25(4): 35-38. | |
[25] |
Castillo P, Trapero-Casas JL, Jiménez-Díaz RM. Effect of time, temperature, and inoculum density on reproduction of Pratylenchus thornei in carrot disk cultures[J]. J Nematol, 1995, 27(1): 120-124.
pmid: 19277270 |
[26] | 冯志新. 植物线虫学[M]. 北京: 农业出版社, 2001. |
Feng ZX. Pant nematology[M]. Beijing: Chinese People’s Publishing House, 2001. | |
[27] |
Götz S, García-Gómez JM, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Res, 2008, 36(10): 3420-3435.
doi: 10.1093/nar/gkn176 pmid: 18445632 |
[28] |
Park BH, Karpinets TV, Syed MH, et al. CAZymes Analysis Toolkit(CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database[J]. Glycobiology, 2010, 20(12): 1574-1584.
doi: 10.1093/glycob/cwq106 URL |
[29] |
Rehman S, Gupta VK, Goyal AK. Identification and functional analysis of secreted effectors from phytoparasitic nematodes[J]. BMC Microbiol, 2016, 16: 48.
doi: 10.1186/s12866-016-0632-8 pmid: 27001199 |
[30] |
Petersen TN, Brunak S, von Heijne G, et al. Signalp 4.0: Discriminating signal peptides from transmembrane regions[J]. Nat Methods, 2011, 8(10): 785-786.
doi: 10.1038/nmeth.1701 pmid: 21959131 |
[31] |
Krogh A, Larsson B, Heijne GV, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. J Mol Biol, 2001, 305(3): 567-580.
doi: 10.1006/jmbi.2000.4315 pmid: 11152613 |
[32] |
Xiang Y, Wang DW, Li JY, et al. Transcriptome analysis of the chrysanthemum foliar nematode, Aphelenchoides ritzemabosi(Aphelenchida: Aphelenchoididae)[J]. PLoS One, 2016, 11(11): e0166877.
doi: 10.1371/journal.pone.0166877 URL |
[33] |
Kikuchi T, Cotton JA, Dalzell JJ, et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J]. PLoS Pathog, 2011, 7(9): e1002219.
doi: 10.1371/journal.ppat.1002219 URL |
[34] |
Sun LH, Zhuo K, Lin BR, et al. The complete mitochondrial genome of Meloidogyne graminicola(Tylenchina): a unique gene arrangement and its phylogenetic implications[J]. PLoS One, 2014, 9(6): e98558.
doi: 10.1371/journal.pone.0098558 URL |
[35] |
Wang F, Li DL, Wang ZY, et al. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi(Nematoda: Aphelenchoididae)[J]. PLoS One, 2014, 9(3): e91591.
doi: 10.1371/journal.pone.0091591 URL |
[36] |
Danchin EGJ, Rosso MN, Vieira P, et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes[J]. PNAS, 2010, 107(41): 17651-17656.
doi: 10.1073/pnas.1008486107 pmid: 20876108 |
[37] | Hunt D. Aphelenchida, Longidoridae and Trichodoridae[M]. GB: CABI, 1993. |
[38] |
Haegeman A, Jones JT, Danchin EGJ. Horizontal gene transfer in Nematodes: a catalyst for plant parasitism?[J]. Mol Plant Microbe Interact, 2011, 24(8): 879-887.
doi: 10.1094/MPMI-03-11-0055 URL |
[39] |
Wang QQ, Han CZ, Ferreira AO, et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. Plant Cell, 2011, 23(6): 2064-2086.
doi: 10.1105/tpc.111.086082 URL |
[40] |
Chen CL, Chen YP, Jian H, et al. Large-scale identification and characterization of Heterodera avenae putative effectors suppressing or inducing cell death in Nicotiana benthamiana[J]. Front Plant Sci, 2018, 8: 2062.
doi: 10.3389/fpls.2017.02062 URL |
[41] |
Jones JT, Smant G, Blok VC. SXP/RAL-2 proteins of the potato cyst nematode Globodera rostochiensis: secreted proteins of the hypodermis and amphids[J]. Nematology, 2000, 2(8): 887-893.
doi: 10.1163/156854100750112833 URL |
[42] |
Tytgat T, Vercauteren I, Vanholme B, et al. An SXP/RAL-2 protein produced by the subventral pharyngeal glands in the plant parasitic root-knot nematode Meloidogyne incognita[J]. Parasitol Res, 2005, 95(1): 50-54.
pmid: 15565464 |
[43] |
Ali S, Magne M, Chen SY, et al. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses[J]. PLoS One, 2015, 10(1): e0115042.
doi: 10.1371/journal.pone.0115042 URL |
[44] |
Neveu C, Jaubert S, Abad P, et al. A set of genes differentially expressed between avirulent and virulent Meloidogyne incognita near-isogenic lines encode secreted proteins[J]. Mol Plant Microbe Interact, 2003, 16(12): 1077-1084.
doi: 10.1094/MPMI.2003.16.12.1077 URL |
[45] |
Lin BR, Zhuo K, Chen SY, et al. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system[J]. New Phytol, 2016, 209(3): 1159-1173.
doi: 10.1111/nph.13701 pmid: 26484653 |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[3] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[4] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[5] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[6] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[7] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[8] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[9] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[10] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[11] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[12] | LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis [J]. Biotechnology Bulletin, 2023, 39(1): 175-186. |
[13] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[14] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
[15] | XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals [J]. Biotechnology Bulletin, 2022, 38(3): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||