Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 158-170.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1190
Previous Articles Next Articles
ZHAO Jin-ling1,3(), AN Lei1,3, REN Xiao-liang1,2()
Received:
2022-09-26
Online:
2023-06-26
Published:
2023-07-07
Contact:
REN Xiao-liang
E-mail:zhaojl21@qdio.ac.cn;xlren@qdio.ac.cn
ZHAO Jin-ling, AN Lei, REN Xiao-liang. Development of Single Cell Transcriptome Sequencing Technology and Its Application in Caenorhabditis elegans[J]. Biotechnology Bulletin, 2023, 39(6): 158-170.
名称 Name | 空间编码方法 Spatial encoding method | 目标 Target | 靶向性 Approach | 研究对象 Subjects of research | 亚细胞水平Subcellular | 参考文献 Reference |
---|---|---|---|---|---|---|
HDST | 条形码珠阵列 | mRNAs | 否 | 小鼠嗅觉细胞 | 是 | [ |
Slide-seq | 条形码珠阵列 | mRNAs | 否 | 小鼠脑 | 否 | [ |
LCM | 显微切割 | mRNAs | 否 | 小鼠脊髓 | 否 | [ |
Geo-seq | 显微切割 | mRNAs | 否 | 小鼠早期胚胎 | 否 | [ |
seqFISH | 单分子荧光原位杂交 | RNA | 是 | 小鼠脑、嗅球 | 是 | [ |
MERFISH | 单分子荧光原位杂交 | RNA | 是 | 人的大脑皮层 | 是 | [ |
FISSEQ | 条形码原位靶向 | mRNAs | 否 | 人原代成纤维细胞 | 是 | [ |
ISS | 条形码原位靶向 | mRNAs | 是 | 人乳腺癌组织 | 是 | [ |
STARmap | 条形码原位靶向 | mRNAs | 是 | 小鼠脑组织切片 | 是 | [ |
SPLiT-seq | 混合分离 | RNA | 是 | 小鼠大脑和脊髓细胞 | 否 | [ |
PETRI-seq | 混合分离 | mRNAs | 是 | 细菌 | 是 | [ |
DBiT-seq | 混合分离 | mRNAs | 是 | 小鼠胚胎 | 否 | [ |
Table 1 Single cell spatial transcriptome sequencing technologies
名称 Name | 空间编码方法 Spatial encoding method | 目标 Target | 靶向性 Approach | 研究对象 Subjects of research | 亚细胞水平Subcellular | 参考文献 Reference |
---|---|---|---|---|---|---|
HDST | 条形码珠阵列 | mRNAs | 否 | 小鼠嗅觉细胞 | 是 | [ |
Slide-seq | 条形码珠阵列 | mRNAs | 否 | 小鼠脑 | 否 | [ |
LCM | 显微切割 | mRNAs | 否 | 小鼠脊髓 | 否 | [ |
Geo-seq | 显微切割 | mRNAs | 否 | 小鼠早期胚胎 | 否 | [ |
seqFISH | 单分子荧光原位杂交 | RNA | 是 | 小鼠脑、嗅球 | 是 | [ |
MERFISH | 单分子荧光原位杂交 | RNA | 是 | 人的大脑皮层 | 是 | [ |
FISSEQ | 条形码原位靶向 | mRNAs | 否 | 人原代成纤维细胞 | 是 | [ |
ISS | 条形码原位靶向 | mRNAs | 是 | 人乳腺癌组织 | 是 | [ |
STARmap | 条形码原位靶向 | mRNAs | 是 | 小鼠脑组织切片 | 是 | [ |
SPLiT-seq | 混合分离 | RNA | 是 | 小鼠大脑和脊髓细胞 | 否 | [ |
PETRI-seq | 混合分离 | mRNAs | 是 | 细菌 | 是 | [ |
DBiT-seq | 混合分离 | mRNAs | 是 | 小鼠胚胎 | 否 | [ |
细胞类型 Cell type | 标记基因 Marker genes |
---|---|
肌肉和中胚层 Muscle and mesoderm | ceh-13, ceh-34, cup-4, cwn-1, dmd-4, dsc-1, egl-20, ehn-3, exp-1, eya-1, glb-26, hlh-1, hlh-8, let-381, lgc-26, mig-1, mls-1, myo-3, pal-1, sfrp-1, unc-30, unc-62, unc-39 |
咽 Pharynx | aff-1, agr-1, ceh-2, ceh-6, ceh-19, ceh-22, ceh-45, cwn-2, dmd-4, elt-4, eyg-1, fos-1, glr-8, gly-15, hlh-6, inx-12, inx-20, irx-1, lec-8, let-23, lys-8, mlt-8, mlt-11, nhr-25, nhr-67, nhr-239, pax-1, phat-1, phat-2, phat-5, ref-1, ser-2, slt-1, spp-7, tnc-2, tni-4, tnt-4, ttx-1, unc-62, unc-129, W05B10.4 |
导管和气孔 Duct and pore | aff-1, ceh-37, grl-2, irx-1 |
肠 Intestine | ceh-37, cpr-1, faah-1, irg-7, pal-1, pbo-4, psa-3, ZC204.12 |
皮下组织和侧线细胞 Hypodermis and seam cells | ahr-1, bus-4, bus-8, bus-12, ceh-13, ceh-16, ceh-32, egl-17, elt-1, elt-3, elt-6, lin-12, lin-39, lin-44, mab-5, pax-3, plx-2, rnt-1, slt-1, tbx-2, tbx-8, tbx-9, unc-62, unc-130, vab-3, vab-7 |
胶质细胞和排泄细胞 Glia and excretory cells | aat-1, aff-1, aqp-7, ceh-6, ceh-32, ceh-37, eak-3, eak-6, grd-15, grl-18, grl-12, grl-2, hlh-11, inx-12, inx-13, irx-1, kcc-3, let-23, lim-6, mls-2, mlt-8, mltn-13, nas-31, nhr-25, pros-1, qua-1, sdf-9, ser-2, slt-1, sym-1, unc-62, wrt-6, F52E1.2, F16F9.3, K08D12.4, K09F5.6 |
早期胚胎、生殖腺和直肠 Early embryo,germline and rectum | glh-1, nos-1, pgl-1 |
纤毛神经元 Ciliated neurons | agr-1, bas-1, cat-2, cat-4, capa-1, ceh-13, ceh-19, ceh-36, che-1, cil-7, cng-2, cog-1, cwn-2, dac-1, daf-11, dat-1, deg-1, dhc-3, dyla-1, flp-3, gcy-8, gcy-9, gcy-11, gcy-18, gcy-23, gcy-31, gcy-32, gcy-33, gcy-35, gcy-36, gcy-37, ns-6, klp-6, nhr-6, nhr-67, nhr-216, ocr-1, ocr-4, odr-7, osm-10, pax-2, pcrg-1, pdf-1, sox-2, sptf-1, srb-6, srd-23, srh-74, ssu-1, tba-6, tba-9, tbx-2, trx-1, ttx-1, unc-42, unc-62, xbx-9, C47D2.1, F15A4.5, F09E8.8, K04D7.6, M04B2.6, R102.2 |
非纤毛神经元和纤毛神经元 Non-ciliated neurons and ciliated neurons | ceh-6, che-7, dop-1, flr-4 |
非纤毛神经元 Non-ciliated neurons | acc-1, acc-2, ace-3, acr-15, acr-16, acr-23, acy-2, alr-1, aptf-1, ast-1, bus-18, ceh-6, ceh-10, ceh-17, ceh-24, ceh-27, ceh-31, ceh-32, ceh-34, ceh-43, ceh-63, ceh-75, cex-1, deg-3, des-2, dop-5, eat-4, egl-5, egl-20, fax-1, flp-1, flp-2, flp-4, flp-9, flp-11, flp-12, flp-13, flp-18, flp-22, gbb-1, gbb-2, gcy-35, glb-17, glc-3, glr-1, glr-2, glr-3, glr-4, glr-5, glr-6, glr-8, gpa-2, gpa-14, hlh-13, hlh-14, hlh-34, ins-1, inx-19, irx-1, lad-2, lim-4, lim-6, lin-11, lin-44, lite-1, mab-9, mbr-1, mec-1, mec-3, mec-7, mec-17, mgl-1, mls-2, mod-5, nhr-67, nlp-7, nlp-12, nlp-15, nlp-17, nmr-2, nob-1, odr-2, pdf-1, pks-1, rig-3, rig-4, rig-5, ser-2, ser-4, ser-6, slt-1, snet-1, snf-11, sox-2, sox-3, tbh-1, tbx-2, tdc-1, tmc-1, ttx-3, twk-16, unc-3, unc-4, unc-6, unc-7, unc-17, unc-25, unc-29, unc-30, unc-42, unc-46, unc-47, unc-62, unc-86, unc-130, vab-7, vab-8, vab-15, zig-5, C35B1.7, F26A10.1, F59E11.7, F17C11.2, K07C5.9, Y43F8B.20 |
直肠细胞 Rectal cells | ceh-6, ceh-27, daf-6, dve-1, egl-20, egl-38, elt-3, mab-9, mom-2, nac-2, nhr-25, pal-1, pha-4, ref-2, tat-4 |
Table 2 Marker genes for terminal cell type annotations
细胞类型 Cell type | 标记基因 Marker genes |
---|---|
肌肉和中胚层 Muscle and mesoderm | ceh-13, ceh-34, cup-4, cwn-1, dmd-4, dsc-1, egl-20, ehn-3, exp-1, eya-1, glb-26, hlh-1, hlh-8, let-381, lgc-26, mig-1, mls-1, myo-3, pal-1, sfrp-1, unc-30, unc-62, unc-39 |
咽 Pharynx | aff-1, agr-1, ceh-2, ceh-6, ceh-19, ceh-22, ceh-45, cwn-2, dmd-4, elt-4, eyg-1, fos-1, glr-8, gly-15, hlh-6, inx-12, inx-20, irx-1, lec-8, let-23, lys-8, mlt-8, mlt-11, nhr-25, nhr-67, nhr-239, pax-1, phat-1, phat-2, phat-5, ref-1, ser-2, slt-1, spp-7, tnc-2, tni-4, tnt-4, ttx-1, unc-62, unc-129, W05B10.4 |
导管和气孔 Duct and pore | aff-1, ceh-37, grl-2, irx-1 |
肠 Intestine | ceh-37, cpr-1, faah-1, irg-7, pal-1, pbo-4, psa-3, ZC204.12 |
皮下组织和侧线细胞 Hypodermis and seam cells | ahr-1, bus-4, bus-8, bus-12, ceh-13, ceh-16, ceh-32, egl-17, elt-1, elt-3, elt-6, lin-12, lin-39, lin-44, mab-5, pax-3, plx-2, rnt-1, slt-1, tbx-2, tbx-8, tbx-9, unc-62, unc-130, vab-3, vab-7 |
胶质细胞和排泄细胞 Glia and excretory cells | aat-1, aff-1, aqp-7, ceh-6, ceh-32, ceh-37, eak-3, eak-6, grd-15, grl-18, grl-12, grl-2, hlh-11, inx-12, inx-13, irx-1, kcc-3, let-23, lim-6, mls-2, mlt-8, mltn-13, nas-31, nhr-25, pros-1, qua-1, sdf-9, ser-2, slt-1, sym-1, unc-62, wrt-6, F52E1.2, F16F9.3, K08D12.4, K09F5.6 |
早期胚胎、生殖腺和直肠 Early embryo,germline and rectum | glh-1, nos-1, pgl-1 |
纤毛神经元 Ciliated neurons | agr-1, bas-1, cat-2, cat-4, capa-1, ceh-13, ceh-19, ceh-36, che-1, cil-7, cng-2, cog-1, cwn-2, dac-1, daf-11, dat-1, deg-1, dhc-3, dyla-1, flp-3, gcy-8, gcy-9, gcy-11, gcy-18, gcy-23, gcy-31, gcy-32, gcy-33, gcy-35, gcy-36, gcy-37, ns-6, klp-6, nhr-6, nhr-67, nhr-216, ocr-1, ocr-4, odr-7, osm-10, pax-2, pcrg-1, pdf-1, sox-2, sptf-1, srb-6, srd-23, srh-74, ssu-1, tba-6, tba-9, tbx-2, trx-1, ttx-1, unc-42, unc-62, xbx-9, C47D2.1, F15A4.5, F09E8.8, K04D7.6, M04B2.6, R102.2 |
非纤毛神经元和纤毛神经元 Non-ciliated neurons and ciliated neurons | ceh-6, che-7, dop-1, flr-4 |
非纤毛神经元 Non-ciliated neurons | acc-1, acc-2, ace-3, acr-15, acr-16, acr-23, acy-2, alr-1, aptf-1, ast-1, bus-18, ceh-6, ceh-10, ceh-17, ceh-24, ceh-27, ceh-31, ceh-32, ceh-34, ceh-43, ceh-63, ceh-75, cex-1, deg-3, des-2, dop-5, eat-4, egl-5, egl-20, fax-1, flp-1, flp-2, flp-4, flp-9, flp-11, flp-12, flp-13, flp-18, flp-22, gbb-1, gbb-2, gcy-35, glb-17, glc-3, glr-1, glr-2, glr-3, glr-4, glr-5, glr-6, glr-8, gpa-2, gpa-14, hlh-13, hlh-14, hlh-34, ins-1, inx-19, irx-1, lad-2, lim-4, lim-6, lin-11, lin-44, lite-1, mab-9, mbr-1, mec-1, mec-3, mec-7, mec-17, mgl-1, mls-2, mod-5, nhr-67, nlp-7, nlp-12, nlp-15, nlp-17, nmr-2, nob-1, odr-2, pdf-1, pks-1, rig-3, rig-4, rig-5, ser-2, ser-4, ser-6, slt-1, snet-1, snf-11, sox-2, sox-3, tbh-1, tbx-2, tdc-1, tmc-1, ttx-3, twk-16, unc-3, unc-4, unc-6, unc-7, unc-17, unc-25, unc-29, unc-30, unc-42, unc-46, unc-47, unc-62, unc-86, unc-130, vab-7, vab-8, vab-15, zig-5, C35B1.7, F26A10.1, F59E11.7, F17C11.2, K07C5.9, Y43F8B.20 |
直肠细胞 Rectal cells | ceh-6, ceh-27, daf-6, dve-1, egl-20, egl-38, elt-3, mab-9, mom-2, nac-2, nhr-25, pal-1, pha-4, ref-2, tat-4 |
[17] | Fuller SA, Takahashi M, Hurrell JG. Cloning of hybridoma cell lines by limiting dilution[J]. Curr Protoc Mol Biol, 2001, Chapter 11: Unit11.8. |
[18] |
Legut M, Sanjana NE. Immunomagnetic cell sorting[J]. Nat Biomed Eng, 2019, 3(10): 759-760.
doi: 10.1038/s41551-019-0459-3 pmid: 31548593 |
[19] |
Gross A, Schoendube J, Zimmermann S, et al. Technologies for single-cell isolation[J]. Int J Mol Sci, 2015, 16(8): 16897-16919.
doi: 10.3390/ijms160816897 pmid: 26213926 |
[20] |
Decarlo K, Emley A, Dadzie OE, et al. Laser capture microdissection: methods and applications[J]. Methods Mol Biol, 2011, 755: 1-15.
doi: 10.1007/978-1-61779-163-5_1 pmid: 21761290 |
[21] | Li HJ. Single-cell RNA sequencing in Drosophila: technologies and applications[J]. Wiley Interdiscip Rev Dev Biol, 2021, 10(5): e396. |
[22] |
Hrvatin S, Hochbaum DR, Nagy MA, et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex[J]. Nat Neurosci, 2018, 21(1): 120-129.
doi: 10.1038/s41593-017-0029-5 pmid: 29230054 |
[23] |
Sanz E, Yang LH, Su T, et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues[J]. Proc Natl Acad Sci USA, 2009, 106(33): 13939-13944.
doi: 10.1073/pnas.0907143106 pmid: 19666516 |
[24] | Zeb Q, Wang C, Shafiq S, et al. An overview of single-cell isolation techniques[M]// Single-Cell Omics. Amsterdam: Elsevier, 2019: 101-135. |
[25] |
Brasko C, Smith K, Molnar C, et al. Intelligent image-based in situ single-cell isolation[J]. Nat Commun, 2018, 9(1): 226.
doi: 10.1038/s41467-017-02628-4 |
[26] |
Lamanna J, Scott EY, Edwards HS, et al. Digital microfluidic isolation of single cells for-Omics[J]. Nat Commun, 2020, 11(1): 5632.
doi: 10.1038/s41467-020-19394-5 pmid: 33177493 |
[27] |
Eckert KA, Kunkel TA. DNA polymerase fidelity and the polymerase chain reaction[J]. PCR Methods Appl, 1991, 1(1): 17-24.
doi: 10.1101/gr.1.1.17 pmid: 1842916 |
[28] | Wen L, Tang F. Plenany session: genetics[J]. Med J Aust, 1971, 2(14): 37-39. |
[29] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[30] |
Baran-Gale J, Chandra T, Kirschner K. Experimental design for single-cell RNA sequencing[J]. Brief Funct Genomics, 2018, 17(4): 233-239.
doi: 10.1093/bfgp/elx035 pmid: 29126257 |
[31] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[32] | Ni J, Hu CS, Li H, et al. Significant improvement in data quality with simplified SCRB-seq[J]. Acta Biochim Biophys Sin(Shanghai), 2020, 52(4): 457-459. |
[33] |
Aicher TP, Carroll S, Raddi G, et al. Seq-well: a sample-efficient, portable picowell platform for massively parallel single-cell RNA sequencing[J]. Methods Mol Biol, 2019, 1979: 111-132.
doi: 10.1007/978-1-4939-9240-9_8 pmid: 31028635 |
[34] |
Cao JY, Packer JS, Ramani V, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism[J]. Science, 2017, 357(6352): 661-667.
doi: 10.1126/science.aam8940 pmid: 28818938 |
[35] |
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3): 666-673.
doi: 10.1016/j.celrep.2012.08.003 pmid: 22939981 |
[36] |
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17(1): 77.
doi: 10.1186/s13059-016-0938-8 URL |
[1] |
Hwang B, Lee JH, Bang D. Author Correction: single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Exp Mol Med, 2021, 53(5): 1005.
doi: 10.1038/s12276-021-00615-w |
[2] |
Huang S. Non-genetic heterogeneity of cells in development: more than just noise[J]. Development, 2009, 136(23): 3853-3862.
doi: 10.1242/dev.035139 pmid: 19906852 |
[3] |
Tay S, Hughey JJ, Lee TK, et al. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing[J]. Nature, 2010, 466(7303): 267-271.
doi: 10.1038/nature09145 |
[4] |
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years[J]. Nat Rev Genet, 2019, 20(11): 631-656.
doi: 10.1038/s41576-019-0150-2 pmid: 31341269 |
[5] |
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
doi: 10.1038/nmeth.1315 pmid: 19349980 |
[6] |
Ryu KH, Huang L, Kang HM, et al. Single-cell RNA sequencing resolves molecular relationships among individual plant cells[J]. Plant Physiol, 2019, 179(4): 1444-1456.
doi: 10.1104/pp.18.01482 pmid: 30718350 |
[7] |
Le C, Liu YM, López-Orozco J, et al. CRISPR technique incorporated with single-cell RNA sequencing for studying hepatitis B infection[J]. Anal Chem, 2021, 93(31): 10756-10761.
doi: 10.1021/acs.analchem.1c02227 pmid: 34328316 |
[8] | Wei Y, Zhang XD, Hu MM, et al. Advances in spatial transcriptome technologies[J]. Progress in Biochemistry and Biophysics, 2022, 49(3): 561-571. |
[9] |
Ma LF, Li HY, Lan JP, et al. Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic[J]. Comput Biol Chem, 2021, 95: 107599.
doi: 10.1016/j.compbiolchem.2021.107599 URL |
[10] |
Tirosh I, Venteicher AS, Hebert C, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma[J]. Nature, 2016, 539(7628): 309-313.
doi: 10.1038/nature20123 |
[37] |
Klein AM, Macosko E. InDrops and Drop-seq technologies for single-cell sequencing[J]. Lab Chip, 2017, 17(15): 2540-2541.
doi: 10.1039/c7lc90070h pmid: 28721415 |
[38] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172): 776-779.
doi: 10.1126/science.1247651 pmid: 24531970 |
[39] |
Fu Y, Wu PH, Beane T, et al. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers[J]. BMC Genomics, 2018, 19(1): 531.
doi: 10.1186/s12864-018-4933-1 pmid: 30001700 |
[40] |
Ding JR, Adiconis X, Simmons SK, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods[J]. Nat Biotechnol, 2020, 38(6): 737-746.
doi: 10.1038/s41587-020-0465-8 pmid: 32341560 |
[41] |
Ma WJ, Sharma S, Jin P, et al. LRcell: detecting the source of differential expression at the sub-cell-type level from bulk RNA-seq data[J]. Brief Bioinform, 2022, 23(3): bbac063.
doi: 10.1093/bib/bbac063 URL |
[42] |
Gustafsson J, Held F, Robinson JL, et al. Sources of variation in cell-type RNA-Seq profiles[J]. PLoS One, 2020, 15(9): e0239495.
doi: 10.1371/journal.pone.0239495 URL |
[43] |
Choudhary S, Satija R. Comparison and evaluation of statistical error models for scRNA-seq[J]. Genome Biol, 2022, 23(1): 27.
doi: 10.1186/s13059-021-02584-9 pmid: 35042561 |
[44] |
Chu SK, Zhao SL, Shyr Y, et al. Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data[J]. Brief Bioinform, 2022, 23(2): bbab565.
doi: 10.1093/bib/bbab565 URL |
[45] |
Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results[J]. Genome Biol, 2010, 11(12): 220.
doi: 10.1186/gb-2010-11-12-220 pmid: 21176179 |
[46] |
Fischer J, Ayers T. Single nucleus RNA-sequencing: how it's done, applications and limitations[J]. Emerg Top Life Sci, 2021, 5(5): 687-690.
doi: 10.1042/ETLS20210074 pmid: 34515767 |
[47] |
Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: a brief overview[J]. Clin Transl Med, 2022, 12(3): e694.
doi: 10.1002/ctm2.694 pmid: 35352511 |
[48] |
Lacar B, Linker SB, Jaeger BN, et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation[J]. Nat Commun, 2016, 7: 11022.
doi: 10.1038/ncomms11022 pmid: 27090946 |
[49] |
Koenitzer JR, Wu HJ, Atkinson JJ, et al. Single-nucleus RNA-sequencing profiling of mouse lung. reduced dissociation bias and improved rare cell-type detection compared with single-cell RNA sequencing[J]. Am J Respir Cell Mol Biol, 2020, 63(6): 739-747.
doi: 10.1165/rcmb.2020-0095MA URL |
[50] |
Weber C. COVID-19 lung atlas[J]. Nat Cell Biol, 2021, 23(11): 1108.
doi: 10.1038/s41556-021-00779-7 pmid: 34750573 |
[51] |
Gupta A, Shamsi F, Altemose N, et al. Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages[J]. Genome Res, 2022, 32(2): 242-257.
doi: 10.1101/gr.275509.121 pmid: 35042723 |
[52] |
Hu P, Liu J, Zhao JJ, et al. Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts[J]. Genes Dev, 2018, 32(19/20): 1344-1357.
doi: 10.1101/gad.316802.118 URL |
[53] |
Barwinska D, El-Achkar TM, Ferreira RM, et al. Molecular characterization of the human kidney interstitium in health and disease[J]. Sci Adv, 2021, 7(7): eabd3359.
doi: 10.1126/sciadv.abd3359 URL |
[54] |
Lake BB, Ai RZ, Kaeser GE, et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain[J]. Science, 2016, 352(6293): 1586-1590.
doi: 10.1126/science.aaf1204 pmid: 27339989 |
[55] |
Conde D, Triozzi PM, Balmant KM, et al. A robust method of nuclei isolation for single-cell RNA sequencing of solid tissues from the plant genus Populus[J]. PLoS One, 2021, 16(5): e0251149.
doi: 10.1371/journal.pone.0251149 URL |
[56] |
Nandy A, Gangopadhyay S, Mukhopadhyay A. Individualizing breast cancer treatment-The dawn of personalized medicine[J]. Exp Cell Res, 2014, 320(1): 1-11.
doi: 10.1016/j.yexcr.2013.09.002 pmid: 24051330 |
[57] |
Patel AG, Chen X, Huang X, et al. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma[J]. Dev Cell, 2022, 57(10): 1226-1240.e8.
doi: 10.1016/j.devcel.2022.04.003 URL |
[58] |
Gaublomme JT, Li B, McCabe C, et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics[J]. Nat Commun, 2019, 10(1): 2907.
doi: 10.1038/s41467-019-10756-2 pmid: 31266958 |
[59] |
Hu TS, Chitnis N, Monos D, et al. Next-generation sequencing technologies: an overview[J]. Hum Immunol, 2021, 82(11): 801-811.
doi: 10.1016/j.humimm.2021.02.012 pmid: 33745759 |
[60] |
Moldèus P, Rahimtula A. Metabolism of paracetamol to a glutathione conjugate catalyzed by prostaglandin synthetase[J]. Biochem Biophys Res Commun, 1980, 96(1): 469-475.
doi: 10.1016/0006-291X(80)91238-3 URL |
[61] |
Fan XY, Tang D, Liao YH, et al. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing[J]. PLoS Biol, 2020, 18(12): e3001017.
doi: 10.1371/journal.pbio.3001017 URL |
[62] |
Jayakumar V, Sakakibara Y. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data[J]. Brief Bioinform, 2019, 20(3): 866-876.
doi: 10.1093/bib/bbx147 pmid: 29112696 |
[63] |
Rhoads A, Au KF. PacBio sequencing and its applications[J]. Genom Proteom Bioinform, 2015, 13(5): 278-289.
doi: 10.1016/j.gpb.2015.08.002 URL |
[64] |
Garalde DR, Snell EA, Jachimowicz D, et al. Highly parallel direct RNA sequencing on an array of nanopores[J]. Nat Methods, 2018, 15(3): 201-206.
doi: 10.1038/nmeth.4577 pmid: 29334379 |
[65] |
De Coster W, De Rijk P, De Roeck A, et al. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome[J]. Genome Res, 2019, 29(7): 1178-1187.
doi: 10.1101/gr.244939.118 pmid: 31186302 |
[66] |
Tshiabuila D, Giandhari J, Pillay S, et al. Comparison of SARS-CoV-2 sequencing using the ONT GridION and the Illumina MiSeq[J]. BMC Genom, 2022, 23(1): 319.
doi: 10.1186/s12864-022-08541-5 |
[11] |
Holmes G, Gonzalez-Reiche AS, Lu N, et al. Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis[J]. Cell Rep, 2020, 32(1): 107871.
doi: 10.1016/j.celrep.2020.107871 URL |
[12] |
Wahane S, Zhou XX, Zhou X, et al. Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity[J]. Sci Adv, 2021, 7(9): eabd8811.
doi: 10.1126/sciadv.abd8811 URL |
[13] |
Celegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology[J]. Science, 1998, 282(5396): 2012-2018.
doi: 10.1126/science.282.5396.2012 URL |
[14] |
Bargmann CI. Neurobiology of the Caenorhabditis elegans genome[J]. Science, 1998, 282(5396): 2028-2033.
doi: 10.1126/science.282.5396.2028 pmid: 9851919 |
[15] |
Corsi AK, Wightman B, Chalfie M. A transparent window into biology: a primer on Caenorhabditis elegans[J]. Genetics, 2015, 200(2): 387-407.
doi: 10.1534/genetics.115.176099 pmid: 26088431 |
[16] |
Wheeler MB. Taking the pain out of writing objectives[J]. J Nurs Adm, 1981, 11(5): 12.
doi: 10.1097/00005110-198110000-00001 URL |
[67] |
Lu HY, Giordano F, Ning ZM. Oxford nanopore MinION sequencing and genome assembly[J]. Genom Proteom Bioinform, 2016, 14(5): 265-279.
doi: 10.1016/j.gpb.2016.05.004 URL |
[68] |
Jeck WR, Iafrate AJ, Nardi V. Nanopore flongle sequencing as a rapid, single-specimen clinical test for fusion detection[J]. J Mol Diagn, 2021, 23(5): 630-636.
doi: 10.1016/j.jmoldx.2021.02.001 pmid: 33618057 |
[69] |
Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance[J]. Nature, 2016, 530(7589): 228-232.
doi: 10.1038/nature16996 |
[70] |
Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells[J]. Nat Commun, 2017, 8: 16027.
doi: 10.1038/ncomms16027 pmid: 28722025 |
[71] |
Abdel-Ghany SE, Hamilton M, Jacobi JL, et al. A survey of the sorghum transcriptome using single-molecule long reads[J]. Nat Commun, 2016, 7: 11706.
doi: 10.1038/ncomms11706 pmid: 27339290 |
[72] |
Wang B, Tseng E, Regulski M, et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing[J]. Nat Commun, 2016, 7: 11708.
doi: 10.1038/ncomms11708 pmid: 27339440 |
[73] |
Żmieńko A, Satyr A. Nanopore sequencing and its application in biology[J]. Postepy Biochem, 2020, 66(3): 193-204.
doi: 10.18388/pb.2020_328 pmid: 33315321 |
[74] |
Wang TT, Wang HY, Cai DW, et al. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo(Phyllostachys edulis)[J]. Plant J, 2017, 91(4): 684-699.
doi: 10.1111/tpj.2017.91.issue-4 URL |
[75] |
Gupta I, Collier PG, Haase B, et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells[J]. Nat Biotechnol, 2018, 36:1197-1202.
doi: 10.1038/nbt.4259 URL |
[76] |
Fededa JP, Petrillo E, Gelfand MS, et al. A polar mechanism coordinates different regions of alternative splicing within a single gene[J]. Mol Cell, 2005, 19(3): 393-404.
pmid: 16061185 |
[77] |
Fagnani M, Barash Y, Ip JY, et al. Functional coordination of alternative splicing in the mammalian central nervous system[J]. Genome Biol, 2007, 8(6): R108.
doi: 10.1186/gb-2007-8-6-r108 pmid: 17565696 |
[78] |
Lebrigand K, Magnone V, Barbry P, et al. High throughput error corrected Nanopore single cell transcriptome sequencing[J]. Nat Commun, 2020, 11(1): 4025.
doi: 10.1038/s41467-020-17800-6 pmid: 32788667 |
[79] |
Eisenstein M. How to make spatial maps of gene activity - down to the cellular level[J]. Nature, 2022, 606(7916): 1036-1038.
doi: 10.1038/d41586-022-01743-7 |
[80] |
Zhou Y, Jia ET, Pan M, et al. Encoding method of single-cell spatial transcriptomics sequencing[J]. Int J Biol Sci, 2020, 16(14): 2663-2674.
doi: 10.7150/ijbs.43887 pmid: 32792863 |
[81] |
Vickovic S, Eraslan G, Salmén F, et al. High-definition spatial transcriptomics for in situ tissue profiling[J]. Nat Methods, 2019, 16(10): 987-990.
doi: 10.1038/s41592-019-0548-y pmid: 31501547 |
[82] |
Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463-1467.
doi: 10.1126/science.aaw1219 pmid: 30923225 |
[83] |
Nichterwitz S, Chen G, Aguila Benitez J, et al. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling[J]. Nat Commun, 2016, 7: 12139.
doi: 10.1038/ncomms12139 pmid: 27387371 |
[84] |
Chen J, Suo SB, Tam PP, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nat Protoc, 2017, 12(3): 566-580.
doi: 10.1038/nprot.2017.003 pmid: 28207000 |
[85] |
Shah S, Lubeck E, Zhou W, et al. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse Hippocampus[J]. Neuron, 2016, 92(2): 342-357.
doi: 10.1016/j.neuron.2016.10.001 URL |
[86] |
Eng CL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH[J]. Nature, 2019, 568(7751): 235-239.
doi: 10.1038/s41586-019-1049-y |
[87] |
Fang RX, Xia CL, Close JL, et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH[J]. Science, 2022, 377(6601): 56-62.
doi: 10.1126/science.abm1741 pmid: 35771910 |
[88] |
Lee JH, Daugharthy ER, Scheiman J, et al. Highly multiplexed subcellular RNA sequencing in situ[J]. Science, 2014, 343(6177): 1360-1363.
doi: 10.1126/science.1250212 URL |
[89] | Ke RQ, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells[J]. Nat Methods, 2013, 10(9): 857-860. |
[90] |
Wang X, Allen WE, Wright MA, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states[J]. Science, 2018, 361(6400): eaat5691.
doi: 10.1126/science.aat5691 URL |
[91] |
Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385): 176-182.
doi: 10.1126/science.aam8999 pmid: 29545511 |
[92] |
Blattman SB, Jiang WY, Oikonomou P, et al. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing[J]. Nat Microbiol, 2020, 5(10): 1192-1201.
doi: 10.1038/s41564-020-0729-6 pmid: 32451472 |
[93] |
Liu Y, Yang MY, Deng YX, et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue[J]. Cell, 2020, 183(6): 1665-1681.e18.
doi: 10.1016/j.cell.2020.10.026 pmid: 33188776 |
[94] |
Thomsen ER, Mich JK, Yao ZZ, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity[J]. Nat Methods, 2016, 13(1): 87-93.
doi: 10.1038/nmeth.3629 pmid: 26524239 |
[95] |
Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data[J]. Nat Biotechnol, 2015, 33(5): 495-502.
doi: 10.1038/nbt.3192 pmid: 25867923 |
[96] |
Srivatsan SR, Regier MC, Barkan E, et al. Embryo-scale, single-cell spatial transcriptomics[J]. Science, 2021, 373(6550): 111-117.
doi: 10.1126/science.abb9536 pmid: 34210887 |
[97] |
Chen A, Liao S, Cheng MN, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays[J]. Cell, 2022, 185(10): 1777-1792.e21.
doi: 10.1016/j.cell.2022.04.003 pmid: 35512705 |
[98] |
Wang MY, Hu QN, Lv TH, et al. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae[J]. Dev Cell, 2022, 57(10): 1271-1283.e4.
doi: 10.1016/j.devcel.2022.04.006 URL |
[99] |
Xia KK, Sun HX, Li J, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves[J]. Dev Cell, 2022, 57(10): 1299-1310.e4.
doi: 10.1016/j.devcel.2022.04.011 URL |
[100] | McKellar DW, Mantri M, Hinchman MM, et al. Spatial mapping of the total transcriptome by in situ polyadenylation[J]. Nat Biotechnol, 2022:(1546-1696(Electronic)). |
[101] |
Packer JS, Zhu Q, Huynh C, et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution[J]. Science, 2019, 365(6459): eaax1971.
doi: 10.1126/science.aax1971 URL |
[102] |
Tintori SC, Osborne Nishimura E, Golden P, et al. A transcriptional lineage of the early C. elegans embryo[J]. Dev Cell, 2016, 38(4): 430-444.
doi: 10.1016/j.devcel.2016.07.025 pmid: 27554860 |
[103] |
Qiu XJ, Rahimzamani A, Wang L, et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe[J]. Cell Syst, 2020, 10(3): 265-274.e11.
doi: S2405-4712(20)30036-3 pmid: 32135093 |
[104] |
Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32(4): 381-386.
doi: 10.1038/nbt.2859 pmid: 24658644 |
[105] |
Bergen V, Lange M, Peidli S, et al. Generalizing RNA velocity to transient cell states through dynamical modeling[J]. Nat Biotechnol, 2020, 38(12): 1408-1414.
doi: 10.1038/s41587-020-0591-3 |
[106] |
La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells[J]. Nature, 2018, 560(7719): 494-498.
doi: 10.1038/s41586-018-0414-6 |
[107] |
Bergen V, Soldatov RA, Kharchenko PV, et al. RNA velocity-current challenges and future perspectives[J]. Mol Syst Biol, 2021, 17(8): e10282.
doi: 10.15252/msb.202110282 URL |
[108] |
Qiu XJ, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories[J]. Nat Methods, 2017, 14(10): 979-982.
doi: 10.1038/nmeth.4402 pmid: 28825705 |
[109] |
Sulston JE. Caenorhabditis elegans: the cell lineage and beyond(Nobel lecture)[J]. Chembiochem, 2003, 4(8): 688-696.
pmid: 12898618 |
[110] |
Arnatkevic̆iūtė A, Fulcher BD, Pocock R, et al. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome[J]. PLoS Comput Biol, 2018, 14(2): e1005989.
doi: 10.1371/journal.pcbi.1005989 URL |
[111] |
Fernandes Póvoa EE, Ebbing ALP, Betist MC, et al. An optimized dissociation protocol for FACS-based isolation of rare cell types from Caenorhabditis elegans L1 larvae[J]. MethodsX, 2020, 7: 100922.
doi: 10.1016/j.mex.2020.100922 URL |
[112] |
Niu B, Bach TN, Chen XY, et al. Computational modeling and analysis of the morphogenetic domain signaling networks regulating C. elegans embryogenesis[J]. Comput Struct Biotechnol J, 2022, 20: 3653-3666.
doi: 10.1016/j.csbj.2022.05.058 URL |
[113] |
Wang JJ, Sun HY, Jiang MM, et al. Tracing cell-type evolution by cross-species comparison of cell atlases[J]. Cell Rep, 2021, 34(9): 108803.
doi: 10.1016/j.celrep.2021.108803 URL |
[114] |
Taylor SR, Santpere G, Weinreb A, et al. Molecular topography of an entire nervous system[J]. Cell, 2021, 184(16): 4329-4347.e23.
doi: 10.1016/j.cell.2021.06.023 pmid: 34237253 |
[115] |
Seifert M, Schmidt E, Baumeister R. The genetics of synapse formation and function in Caenorhabditis elegans[J]. Cell Tissue Res, 2006, 326(2): 273-285.
pmid: 16896949 |
[116] |
Ben-David E, Boocock J, Guo LH, et al. Whole-organism eQTL mapping at cellular resolution with single-cell sequencing[J]. eLife, 2021, 10: e65857.
doi: 10.7554/eLife.65857 URL |
[117] |
Sun Y, Yu QC, Li L, et al. Single-cell RNA profiling links ncRNAs to spatiotemporal gene expression during C. elegans embryogenesis[J]. Sci Rep, 2020, 10(1): 18863.
doi: 10.1038/s41598-020-75801-3 |
[118] |
Baek S, Lee I. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation[J]. Comput Struct Biotechnol J, 2020, 18: 1429-1439.
doi: 10.1016/j.csbj.2020.06.012 URL |
[119] |
Shi PY, Nie YG, Yang JW, et al. Fundamental and practical approaches for single-cell ATAC-seq analysis[J]. aBIOTECH, 2022, 3(3): 212-223.
doi: 10.1007/s42994-022-00082-5 pmid: 36313930 |
[120] |
Satpathy AT, Granja JM, Yost KE, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion[J]. Nat Biotechnol, 2019, 37(8): 925-936.
doi: 10.1038/s41587-019-0206-z pmid: 31375813 |
[121] |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888-1902.e21.
doi: S0092-8674(19)30559-8 pmid: 31178118 |
[122] |
Durham TJ, Daza RM, Gevirtzman L, et al. Comprehensive characterization of tissue-specific chromatin accessibility in L2 Caenorhabditis elegans nematodes[J]. Genome Res, 2021, 31(10): 1952-1969.
doi: 10.1101/gr.271791.120 URL |
[123] |
Chen XQ, Litzenburger UM, Wei YN, et al. Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity[J]. Nat Commun, 2018, 9(1): 4590.
doi: 10.1038/s41467-018-07115-y pmid: 30389926 |
[124] |
Mezger A, Klemm S, Mann I, et al. High-throughput chromatin accessibility profiling at single-cell resolution[J]. Nat Commun, 2018, 9(1): 3647.
doi: 10.1038/s41467-018-05887-x pmid: 30194434 |
[125] |
Lareau CA, Duarte FM, Chew JG, et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility[J]. Nat Biotechnol, 2019, 37(8): 916-924.
doi: 10.1038/s41587-019-0147-6 pmid: 31235917 |
[126] |
Hu YJ, An Q, Sheu K, et al. Single cell multi-omics technology: methodology and application[J]. Front Cell Dev Biol, 2018, 6: 28.
doi: 10.3389/fcell.2018.00028 pmid: 29732369 |
[127] |
Hou Y, Guo HH, Cao C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas[J]. Cell Res, 2016, 26(3): 304-319.
doi: 10.1038/cr.2016.23 pmid: 26902283 |
[128] |
Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science[J]. Nat Rev Genet, 2013, 14(9): 618-630.
doi: 10.1038/nrg3542 pmid: 23897237 |
[129] |
Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis[J]. Nat Rev Genet, 2016, 17(10): 643-656.
doi: 10.1038/nrg.2016.97 pmid: 27629932 |
[130] |
da Veiga Beltrame E, Arnaboldi V, Sternberg PW. WormBase single-cell tools[J]. Bioinform Adv, 2022, 2(1): vbac018.
doi: 10.1093/bioadv/vbac018 URL |
[1] | AN Lei, ZHAO Jin-ling, REN Xiao-liang. RNA Modification and Its Research Progress in Caenorhabditis elegans [J]. Biotechnology Bulletin, 2023, 39(4): 176-186. |
[2] | YE Na, ZHANG Xiao-lan, BAO Peng-jia, WANG Xing-dong, YAN Ping, PAN He-ping. Single Cell Sequencing Technology and Its Application in Hair Follicle Development [J]. Biotechnology Bulletin, 2021, 37(10): 245-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||