Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 12-26.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0188
Previous Articles Next Articles
ZHOU Lu-qi1(), CUI Ting-ru2, HAO Nan1, ZHAO Yu-wei1, ZHAO Bin1(), LIU Ying-chao1()
Received:
2023-03-03
Online:
2023-09-26
Published:
2023-10-24
Contact:
ZHAO Bin, LIU Ying-chao
E-mail:luqizhou_hbnd@126.com;bdzhaobin@126.com;liuyingchao@hebau.edu.cn
ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products[J]. Biotechnology Bulletin, 2023, 39(9): 12-26.
Fig. 2 Analysis strategies based on affinity proteomic A: Conjugated with biotin. B: Probes based on the bioorthogonal reactive groups(alkynyl). C: Biological probes based on photoaffinity groups
小分子化合物 Small molecule compound | 基于活性的探针结构 ABPs | 靶蛋白 Protein target |
---|---|---|
Thieno[2,3-d]pyrimidine derivatives[ | Tubulin | |
Ebselen[ | β-lactoglobulin A | |
Clavulanic acid[ | Human serum albumin; Ig gamma-1 chain C region human; Haptoglobin human; Ig kappa chain C region human | |
Dihydroartemisinin[ | DNA methyltransferase 1 | |
1,2,4-Oxadiazole derivatives[ | Rpn6 | |
Prazosin[ | Flagellum Attachment Zone 1 |
Table 1 Examples of biotin probes used for the target identification of small molecular compounds
小分子化合物 Small molecule compound | 基于活性的探针结构 ABPs | 靶蛋白 Protein target |
---|---|---|
Thieno[2,3-d]pyrimidine derivatives[ | Tubulin | |
Ebselen[ | β-lactoglobulin A | |
Clavulanic acid[ | Human serum albumin; Ig gamma-1 chain C region human; Haptoglobin human; Ig kappa chain C region human | |
Dihydroartemisinin[ | DNA methyltransferase 1 | |
1,2,4-Oxadiazole derivatives[ | Rpn6 | |
Prazosin[ | Flagellum Attachment Zone 1 |
小分子化合物 Small molecule compound | 基于活性的探针结构 ABPs | 靶蛋白 Protein target |
---|---|---|
Catechol estrogens[ | Cytochrome c; superoxide dismutase | |
Calenduloside E[ | Hsp90 | |
Swertiamarin[ | AKT-PH | |
Salinipostin A[ | Lysophospholipase; exported lipase 2; esterase; a/β hydrolase; BEM4 6-like protein | |
Nitro-fatty acids[ | Extended synaptotagmin 2; signal transducer and activator of transcription 3; toll-like receptor 2; retinoid X receptor alpha; glucocorticoid receptor | |
Natural product: BE-43547A2[ | Eukaryotic translation elongation factor 1 |
Table 2 Examples of bioorthogonal chemistry for target identification of small molecular compounds
小分子化合物 Small molecule compound | 基于活性的探针结构 ABPs | 靶蛋白 Protein target |
---|---|---|
Catechol estrogens[ | Cytochrome c; superoxide dismutase | |
Calenduloside E[ | Hsp90 | |
Swertiamarin[ | AKT-PH | |
Salinipostin A[ | Lysophospholipase; exported lipase 2; esterase; a/β hydrolase; BEM4 6-like protein | |
Nitro-fatty acids[ | Extended synaptotagmin 2; signal transducer and activator of transcription 3; toll-like receptor 2; retinoid X receptor alpha; glucocorticoid receptor | |
Natural product: BE-43547A2[ | Eukaryotic translation elongation factor 1 |
小分子化合物Small molecule compound | 探针结构ABPs | 靶蛋白Protein target |
---|---|---|
Anticancer pyrroloquinazoline: LBL1[ | Nuclear lamins | |
Benzoxepane Derivatives[ | PKM2 | |
7-oxocallitrisic acid[ | Carnitine palmitoyltransferase 1A | |
MCC950[ | Carbonic Anhydrase 2 | |
Protopanaxadiol[ | Retinoblastoma Binding Protein 4 |
Table 3 Photoaffinity probe for the target identification of small molecular compounds
小分子化合物Small molecule compound | 探针结构ABPs | 靶蛋白Protein target |
---|---|---|
Anticancer pyrroloquinazoline: LBL1[ | Nuclear lamins | |
Benzoxepane Derivatives[ | PKM2 | |
7-oxocallitrisic acid[ | Carnitine palmitoyltransferase 1A | |
MCC950[ | Carbonic Anhydrase 2 | |
Protopanaxadiol[ | Retinoblastoma Binding Protein 4 |
Fig. 4 Schematics of label-free target identification methods A: Drug affinity responsive target stability(DARTS). B: Cellular thermal shift assay(CETSA). C: Thermal proteome profiling(TPP). D: Stability of proteins from rates of oxidation(SPROX)
[1] | Van Emden HF. Crop production and crop protection: estimated losses in major food and cash crops[J]. J Agric Sci, 1996, 127(1): 137. |
[2] | 吴剑, 宋宝安. 绿色农药创新及靶标研究现状与思考[J]. 中国科学基金, 2020, 34(4): 486-494. |
Wu J, Song BA. Current situation and thinking for the innovation of green pesticide[J]. Bull Natl Nat Sci Found China, 2020, 34(4): 486-494. | |
[3] |
Guo ZR. The modification of natural products for medical use[J]. Acta Pharm Sin B, 2017, 7(2): 119-136.
doi: 10.1016/j.apsb.2016.06.003 pmid: 28303218 |
[4] | 邵旭升, 杜少卿, 李忠, 等. 中国绿色农药的研究和发展[J]. 世界农药, 2020, 42(4)16-24. |
Shao XS, Du SQ, Li Z, et al. Research and development of green pesticides in China[J]. World Pestic, 2020, 42(4)16-24. | |
[5] |
Cheng D, Feng MX, Ji YF, et al. Effects of celangulin IV and V from Celastrus angulatus maxim on Na+/K+-ATPase activities of the oriental armyworm(Lepidoptera: Noctuidae)[J]. J Insect Sci, 2016, 16(1): 59.
doi: 10.1093/jisesa/iew051 URL |
[6] |
Moffat JG, Vincent F, Lee JA, et al. Opportunities and challenges in phenotypic drug discovery: an industry perspective[J]. Nat Rev Drug Discov, 2017, 16(8): 531-543.
doi: 10.1038/nrd.2017.111 pmid: 28685762 |
[7] |
Heilker R, Lessel U, Bischoff D. The power of combining phenotypic and target-focused drug discovery[J]. Drug Discov Today, 2019, 24(2): 526-532.
doi: S1359-6446(18)30155-7 pmid: 30359770 |
[8] |
Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery[J]. Drug Discov Today, 2016, 21(1): 82-89.
doi: S1359-6446(15)00290-1 pmid: 26272035 |
[9] |
Liu GY, Ju XL, Cheng J, et al. 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech[J]. Chemosphere, 2010, 78(3): 300-306.
doi: 10.1016/j.chemosphere.2009.10.038 URL |
[10] |
Meissner F, Geddes-McAlister J, Mann M, et al. The emerging role of mass spectrometry-based proteomics in drug discovery[J]. Nat Rev Drug Discov, 2022, 21(9): 637-654.
doi: 10.1038/s41573-022-00409-3 |
[11] |
Majumder A, Biswal MR, Prakash MK. One drug multiple targets: an approach to predict drug efficacies on bacterial strains differing in membrane composition[J]. ACS Omega, 2019, 4(3): 4977-4983.
doi: 10.1021/acsomega.8b02862 |
[12] |
Strassberger V, Fugmann T, Neri D, et al. Chemical proteomic and bioinformatic strategies for the identification and quantification of vascular antigens in cancer[J]. J Proteom, 2010, 73(10): 1954-1973.
doi: 10.1016/j.jprot.2010.05.018 URL |
[13] |
Fedorov II, Lineva VI, Tarasova IA, et al. Mass spectrometry-based chemical proteomics for drug target discoveries[J]. Biochemistry Moscow, 2022, 87(9): 983-994.
doi: 10.1134/S0006297922090103 |
[14] |
Humphrey SJ, James DE, Mann M. Protein phosphorylation: a major switch mechanism for metabolic regulation[J]. Trends Endocrinol Metab, 2015, 26(12): 676-687.
doi: 10.1016/j.tem.2015.09.013 URL |
[15] |
Rix U, Superti-Furga G. Target profiling of small molecules by chemical proteomics[J]. Nat Chem Biol, 2009, 5(9): 616-624.
doi: 10.1038/nchembio.216 pmid: 19690537 |
[16] |
Harding MW, Galat A, Uehling DE, et al. A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase[J]. Nature, 1989, 341(6244): 758-760.
doi: 10.1038/341758a0 |
[17] |
Bach S, Knockaert M, Reinhardt J, et al. Roscovitine targets, protein kinases and pyridoxal kinase[J]. J Biol Chem, 2005, 280(35): 31208-31219.
doi: 10.1074/jbc.M500806200 pmid: 15975926 |
[18] |
Gyenis L, Kuś A, Bretner M, et al. Functional proteomics strategy for validation of protein kinase inhibitors reveals new targets for a TBB-derived inhibitor of protein kinase CK2[J]. J Proteom, 2013, 81: 70-79.
doi: 10.1016/j.jprot.2012.09.017 URL |
[19] |
Faiella L, Piaz FD, Bisio A, et al. A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes[J]. Mol BioSyst, 2012, 8(10): 2637-2644.
doi: 10.1039/c2mb25171j pmid: 22802135 |
[20] |
Lu LN, Qi ZJ, Zhang JW, et al. Separation of binding protein of celangulin V from the midgut of Mythimna separata walker by affinity chromatography[J]. Toxins, 2015, 7(5): 1738-1748.
doi: 10.3390/toxins7051738 URL |
[21] |
Hu LH, Iliuk A, Galan J, et al. Identification of drug targets in vitro and in living cells by soluble-nanopolymer-based proteomics[J]. Angewandte Chemie Int Ed, 2011, 50(18): 4133-4136.
doi: 10.1002/anie.v50.18 URL |
[22] |
Bantscheff M, Scholten A, Heck AJR. Revealing promiscuous drug-target interactions by chemical proteomics[J]. Drug Discov Today, 2009, 14(21/22): 1021-1029.
doi: 10.1016/j.drudis.2009.07.001 URL |
[23] |
Adam GC, Sorensen EJ, Cravatt BF. Chemical strategies for functional proteomics[J]. Mol Cell Proteom, 2002, 1(10): 781-790.
doi: 10.1074/mcp.R200006-MCP200 URL |
[24] |
Benns HJ, Tate EW, Child MA. Activity-based protein profiling for the study of parasite biology[J]. Curr Top Microbiol Immunol, 2019, 420:155-174.
doi: 10.1007/82_2018_123 pmid: 30105424 |
[25] |
Zhou YQ, Xiao YL. Target identification of bioactive natural products[J]. Acta Chim Sinica, 2018, 76(3): 177.
doi: 10.6023/A17110484 |
[26] | 杨婉琪, 张崇敬. 基于分子原型和分子探针的药用活性分子蛋白作用靶标研究[J]. 药学学报, 2020, 55(7): 1439-1452. |
Yang WQ, Zhang CJ. Protein targets of medicinally active molecules based on their original structures and molecular probes[J]. Acta Pharm Sin, 2020, 55(7): 1439-1452. | |
[27] |
Wright MH, Tao Y, Drechsel J, et al. Quantitative chemoproteomic profiling reveals multiple target interactions of spongiolactone derivatives in leukemia cells[J]. Chem Commun, 2017, 53(95): 12818-12821.
doi: 10.1039/C7CC04990K URL |
[28] |
Wang C, Chen N. Activity-based protein profiling[J]. Acta Chim Sinica, 2015, 73(7): 657.
doi: 10.6023/A15040223 |
[29] |
Zanon PRA, Lewald L, Hacker SM. Isotopically labeled desthiobiotin azide(isoDTB)tags enable global profiling of the bacterial cysteinome[J]. Angewandte Chemie Int Ed, 2020, 59(7): 2829-2836.
doi: 10.1002/anie.v59.7 URL |
[30] |
Kong LM, Deng X, Zuo ZL, et al. Identification and validation of p50 as the cellular target of eriocalyxin B[J]. Oncotarget, 2014, 5(22): 11354-11364.
doi: 10.18632/oncotarget.v5i22 URL |
[31] |
Kwok BHB, Koh B, Ndubuisi MI, et al. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase[J]. Chem Biol, 2001, 8(8): 759-766.
doi: 10.1016/S1074-5521(01)00049-7 URL |
[32] |
Yang CR, Peng B, Cao SL, et al. Synthesis, cytotoxic evaluation and target identification of thieno[2, 3-d]pyrimidine derivatives with a dithiocarbamate side chain at C2 position[J]. Eur J Med Chem, 2018, 154: 324-340.
doi: 10.1016/j.ejmech.2018.05.028 URL |
[33] |
Chen ZZ, Jiang ZY, Chen N, et al. Target discovery of ebselen with a biotinylated probe[J]. Chem Commun, 2018, 54(68): 9506-9509.
doi: 10.1039/C8CC04258F URL |
[34] |
Martín-Serrano Á, Gonzalez-Morena JM, Barbero N, et al. Biotin-labelled clavulanic acid to identify proteins target for haptenation in serum: implications in allergy studies[J]. Front Pharmacol, 2020, 11: 594755.
doi: 10.3389/fphar.2020.594755 URL |
[35] |
Zhou W, Chen MM, Liu HL, et al. Dihydroartemisinin suppresses renal fibrosis in mice by inhibiting DNA-methyltransferase 1 and increasing Klotho[J]. Acta Pharmacol Sin, 2022, 43(10): 2609-2623.
doi: 10.1038/s41401-022-00898-3 pmid: 35347248 |
[36] |
Dai Z, An LY, Chen XY, et al. Target fishing reveals a novel mechanism of 1,2,4-oxadiazole derivatives targeting Rpn6, a subunit of 26S proteasome[J]. J Med Chem, 2022, 65(6): 5029-5043.
doi: 10.1021/acs.jmedchem.1c02210 pmid: 35253427 |
[37] |
Orahoske CM, Afrin M, Li YX, et al. Identification of prazosin as a potential flagellum attachment zone 1(FAZ1)inhibitor for the treatment of human African trypanosomiasis[J]. ACS Infect Dis, 2022, 8(8): 1711-1726.
doi: 10.1021/acsinfecdis.2c00331 pmid: 35894227 |
[38] |
Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods[J]. Chem Biol, 2004, 11(4): 535-546.
doi: 10.1016/j.chembiol.2004.03.012 URL |
[39] |
Wang JG, Tan XF, Nguyen VS, et al. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis[J]. Mol Cell Proteom, 2014, 13(3): 876-886.
doi: 10.1074/mcp.M113.029793 URL |
[40] |
Ciepla P, Konitsiotis AD, Serwa RA, et al. New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish[J]. Chem Sci, 2014, 5(11): 4249-4259.
pmid: 25574372 |
[41] |
Wang JG, Zhang JB, Zhang CJ, et al. In situ proteomic profiling of curcumin targets in HCT116 colon cancer cell line[J]. Sci Rep, 2016, 6(1): 1-8.
doi: 10.1038/s41598-016-0001-8 |
[42] |
Chen B, Long QS, Zhao YL, et al. Sulfone-based probes unraveled dihydrolipoamide S-succinyltransferase as an unprecedented target in phytopathogens[J]. J Agric Food Chem, 2019, 67(25): 6962-6969.
doi: 10.1021/acs.jafc.9b02059 URL |
[43] |
Liang HC, Liu YC, Chen H, et al. In situ click reaction coupled with quantitative proteomics for identifying protein targets of catechol estrogens[J]. J Proteome Res, 2018, 17(8): 2590-2599.
doi: 10.1021/acs.jproteome.8b00021 URL |
[44] |
Tian Y, Wang S, Shang H, et al. The clickable activity-based probe of anti-apoptotic calenduloside E[J]. Pharm Biol, 2019, 57(1): 133-139.
doi: 10.1080/13880209.2018.1557699 pmid: 30843752 |
[45] |
Zhang M, Ma XY, Xu HL, et al. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation[J]. FEBS J, 2020, 287(9): 1816-1829.
doi: 10.1111/febs.15112 pmid: 31665825 |
[46] |
Yoo E, Schulze CJ, Stokes BH, et al. The antimalarial natural product salinipostin A identifies essential α/β serine hydrolases involved in lipid metabolism in P.falciparum parasites[J]. Cell Chem Biol, 2020, 27(2): 143-157.e5.
doi: 10.1016/j.chembiol.2020.01.001 URL |
[47] |
Fang MY, Huang KH, Tu WJ, et al. Chemoproteomic profiling reveals cellular targets of nitro-fatty acids[J]. Redox Biol, 2021, 46: 102126.
doi: 10.1016/j.redox.2021.102126 URL |
[48] | Liu C, Wang L, Sun YJ, et al. Probe synthesis reveals eukaryotic translation elongation Factor 1 Alpha 1 as the anti-pancreatic cancer target of BE-43547A2[J]. Angewandte Chemie, 2022, 134(34): e202206953. |
[49] | Cai Q, Li ZQ, Wei JJ, et al. Assembly of indole-2-carboxylic acid esters through a ligand-free copper-catalysed cascade process[J]. Chem Commun, 2009(48): 7581-7583. |
[50] |
Yan JB, Yao RF, Chen L, et al. Dynamic perception of jasmonates by the F-box protein COI1[J]. Mol Plant, 2018, 11(10): 1237-1247.
doi: S1674-2052(18)30241-7 pmid: 30092285 |
[51] |
Eirich J, Orth R, Sieber SA. Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells[J]. J Am Chem Soc, 2011, 133(31): 12144-12153.
doi: 10.1021/ja2039979 pmid: 21736328 |
[52] |
Lamos SM, Krusemark CJ, McGee CJ, et al. Mixed isotope photoaffinity reagents for identification of small-molecule targets by mass spectrometry[J]. Angewandte Chemie Int Ed, 2006, 45(26): 4329-4333.
doi: 10.1002/anie.v45:26 URL |
[53] |
Li BX, Chen JJ, Chao B, et al. Anticancer pyrroloquinazoline LBL1 targets nuclear lamins[J]. ACS Chem Biol, 2018, 13(5): 1380-1387.
doi: 10.1021/acschembio.8b00266 pmid: 29648791 |
[54] |
Gao CL, Hou GG, Liu J, et al. Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke[J]. Angewandte Chemie Int Ed, 2020, 59(6): 2429-2439.
doi: 10.1002/anie.v59.6 URL |
[55] |
Kennedy CR, Goya Grocin A, Kovačič T, et al. A probe for NLRP3 inflammasome inhibitor MCC950 identifies carbonic anhydrase 2 as a novel target[J]. ACS Chem Biol, 2021, 16(6): 982-990.
doi: 10.1021/acschembio.1c00218 pmid: 34003636 |
[56] | Zhuo FF, Guo Q, Zheng YZ, et al. Photoaffinity labeling-based chemoproteomic strategy reveals RBBP4 as a cellular target of protopanaxadiol against colorectal cancer cells[J]. ChemBioChem, 2022, 23(13): e202200038. |
[57] |
Corson TW, Cavga H, Aberle N, et al. Triptolide directly inhibits dCTP pyrophosphatase[J]. ChemBioChem, 2011, 12(11): 1767-1773.
doi: 10.1002/cbic.201100007 pmid: 21671327 |
[58] |
Klaić L, Morimoto RI, Silverman RB. Celastrol analogues as inducers of the heat shock response. design and synthesis of affinity probes for the identification of protein targets[J]. ACS Chem Biol, 2012, 7(5): 928-937.
doi: 10.1021/cb200539u pmid: 22380712 |
[59] |
Zhao Q, Ding Y, Deng ZS, et al. Natural products triptolide, celastrol, and withaferin A inhibit the chaperone activity of peroxiredoxin I[J]. Chem Sci, 2015, 6(7): 4124-4130.
doi: 10.1039/c5sc00633c pmid: 28717468 |
[60] |
Lomenick B, Jung G, Wohlschlegel JA, et al. Target identification using drug affinity responsive target stability(DARTS)[J]. Curr Protoc Chem Biol, 2011, 3(4): 163-180.
doi: 10.1002/9780470559277.ch110180 pmid: 22229126 |
[61] |
Zhang X, Xu H, Bi XY, et al. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways[J]. Cell Death Dis, 2021, 12(10): 931.
doi: 10.1038/s41419-021-04221-6 pmid: 34642304 |
[62] |
Kim Y, Sugihara Y, Kim TY, et al. Identification and validation of VEGFR2 kinase as a target of voacangine by a systematic combination of DARTS and MSI[J]. Biomolecules, 2020, 10(4): 508.
doi: 10.3390/biom10040508 URL |
[63] |
Zhu Z, Li RM, Qin W, et al. Target engagement of ginsenosides in mild cognitive impairment using mass spectrometry-based drug affinity responsive target stability[J]. J Ginseng Res, 2022, 46(6): 750-758.
doi: 10.1016/j.jgr.2021.12.003 pmid: 36312734 |
[64] |
Zhao B, Fan SJ, Fan ZJ, et al. Discovery of pyruvate kinase as a novel target of new fungicide candidate 3-(4-methyl-1, 2, 3-thiadiazolyl)-6-trichloromethyl-[1, 2, 4]-triazolo-[3, 4-b][1, 3, 4]-thiadizole[J]. J Agric Food Chem, 2018, 66(46): 12439-12452.
doi: 10.1021/acs.jafc.8b03797 URL |
[65] |
Geng J, Liu W, Gao J, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1[J]. Br J Pharmacol, 2019, 176(23): 4574-4591.
doi: 10.1111/bph.v176.23 URL |
[66] |
Hu HF, Xu WW, Li YJ, et al. Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission[J]. Theranostics, 2021, 11(4): 1828-1844.
doi: 10.7150/thno.48698 URL |
[67] |
Ren YS, Li HL, Piao XH, et al. Drug affinity responsive target stability(DARTS)accelerated small molecules target discovery: principles and application[J]. Biochem Pharmacol, 2021, 194: 114798.
doi: 10.1016/j.bcp.2021.114798 URL |
[68] |
West GM, Tucker CL, Xu T, et al. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements[J]. Proc Natl Acad Sci USA, 2010, 107(20): 9078-9082.
doi: 10.1073/pnas.1000148107 pmid: 20439767 |
[69] |
Molina DM, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013, 341(6141): 84-87.
doi: 10.1126/science.1233606 pmid: 23828940 |
[70] |
Savitski MM, Reinhard FBM, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome[J]. Science, 2014, 346(6205): 1255784.
doi: 10.1126/science.1255784 URL |
[71] |
Islam A, Su AJ, Zeng ZM, et al. Capsaicin targets tNOX(ENOX2)to inhibit G1 cyclin/CDK complex, as assessed by the cellular thermal shift assay(CETSA)[J]. Cells, 2019, 8(10): 1275.
doi: 10.3390/cells8101275 URL |
[72] |
Dziekan JM, Yu H, Chen D, et al. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay[J]. Sci Transl Med, 2019, 11(473): eaau3174.
doi: 10.1126/scitranslmed.aau3174 URL |
[73] |
Wang JJ, Weng QF, Yin F, et al. Interactions of destruxin A with silkworms'arginine tRNA synthetase and lamin-C proteins[J]. Toxins, 2020, 12(2): 137.
doi: 10.3390/toxins12020137 URL |
[74] | 金金, 梁旭俊, 毕武, 等. 基于液相色谱-串联质谱技术鉴定药物靶标的研究进展[J]. 生命科学研究, 2022. DOI: 10.16605/j.cnki.1007-7847.2022.08.0187. |
Jin J, Liang XJ, Bi W, et al. Advances in the identification of drug targets based on liquid chromatography-tandem mass spectrometry[J]. Life Sci Res, 2022. DOI: 10.16605/j.cnki.1007-7847.2022.08.0187. | |
[75] |
Li CH, Zhou Y, Tu PF, et al. Natural carbazole alkaloid murrayafoline A displays potent anti-neuroinflammatory effect by directly targeting transcription factor Sp1 in LPS-induced microglial cells[J]. Bioorg Chem, 2022, 129: 106178.
doi: 10.1016/j.bioorg.2022.106178 URL |
[76] |
Hatstat AK, Quan BY, Bailey MA, et al. Chemoproteomic-enabled characterization of small GTPase Rab1a as a target of an N-arylbenzimidazole ligand's rescue of Parkinson's-associated cell toxicity[J]. RSC Chem Biol, 2022, 3(1): 96-111.
doi: 10.1039/D1CB00103E URL |
[77] |
Ogburn RN, Jin L, Meng H, et al. Discovery of tamoxifen and N-desmethyl tamoxifen protein targets in MCF-7 cells using large-scale protein folding and stability measurements[J]. J Proteome Res, 2017, 16(11): 4073-4085.
doi: 10.1021/acs.jproteome.7b00442 URL |
[78] |
Geer Wallace MA, Kwon DY, Weitzel DH, et al. Discovery of manassantin A protein targets using large-scale protein folding and stability measurements[J]. J Proteome Res, 2016, 15(8): 2688-2696.
doi: 10.1021/acs.jproteome.6b00237 pmid: 27322910 |
[79] |
Peng H, Guo HB, Pogoutse O, et al. An unbiased chemical proteomics method identifies FabI as the primary target of 6-OH-BDE-47[J]. Environ Sci Technol, 2016, 50(20): 11329-11336.
doi: 10.1021/acs.est.6b03541 URL |
[80] | 郝海平, 叶慧, 皖宁, 等. 一种基于化学蛋白质组学的小分子靶标筛选方法及其应用:CN112485442A[P]. 2021-03-12. |
Hao HP, Ye H, Wan N. A Chemical proteomics Based Small Mole-cular Target Screening Method and Its Application:CN112485442A[P]. 2021-03-12. | |
[81] |
Zhu YY, Wan N, Shan XN, et al. Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice[J]. Acta Pharm Sin B, 2021, 11(5): 1200-1212.
doi: 10.1016/j.apsb.2020.12.008 pmid: 34094828 |
[82] |
Deng GL, Zhou LS, Wang BL, et al. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation[J]. J Immunother Cancer, 2022, 10(10): e004874.
doi: 10.1136/jitc-2022-004874 URL |
[83] | Chan JNY, Vuckovic D, Sleno L, et al. Target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization[J]. Mol Cell Proteomics, 2012, 11(7): M111.016642. |
[84] |
Schäkermann S, Wüllner D, Yayci A, et al. Applicability of chromatographic Co-elution for antibiotic target identification[J]. Proteomics, 2021, 21(1): 2000038.
doi: 10.1002/pmic.v21.1 URL |
[85] |
Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases[J]. Clin Transl Med, 2018, 7(1): e3.
doi: 10.1186/s40169-017-0181-2 URL |
[86] |
Chen JX, Song BA. Natural nematicidal active compounds: recent research progress and outlook[J]. J Integr Agric, 2021, 20(8): 2015-2031.
doi: 10.1016/S2095-3119(21)63617-1 URL |
[87] |
Croston GE. The utility of target-based discovery[J]. Expert Opin Drug Discov, 2017, 12(5): 427-429.
doi: 10.1080/17460441.2017.1308351 URL |
[1] | ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter [J]. Biotechnology Bulletin, 2023, 39(10): 41-49. |
[2] | ZHANG Guo-ning, FENG Jing-xian, YANG Ying-bo, CHEN Wan-sheng, XIAO Ying. Application of Cyclodextrin Glucosyltransferase in the Glycosylation Modification of Natural Products [J]. Biotechnology Bulletin, 2022, 38(3): 246-255. |
[3] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[4] | CHEN Peng. Rapid Screening Strategy for Target Identification of Bioactive Natural Products [J]. Biotechnology Bulletin, 2020, 36(11): 180-187. |
[5] | KUANG Xue-jun, ZOU Li-qiu, SUN Chao, CHEN Shi-lin. Optimization Strategies for Synthetic Biological Systems of Natural Products [J]. Biotechnology Bulletin, 2017, 33(1): 48-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||