Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 27-39.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0121
Previous Articles Next Articles
XU Fa-di1(), XU Kang1, SUN Dong-ming1, LI Meng-lei1, ZHAO Jian-zhi1,2(), BAO Xiao-ming1()
Received:
2023-02-14
Online:
2023-09-26
Published:
2023-10-24
Contact:
ZHAO Jian-zhi, BAO Xiao-ming
E-mail:xu_fadi@163.com;zhjzh2006@126.com;baoxm@qlu.edu.cn
XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.)[J]. Biotechnology Bulletin, 2023, 39(9): 27-39.
种类Type | 纤维素Cellulose/% | 半纤维素Hemicellulose/% | 木质素Lignin/% | 参考文献References |
---|---|---|---|---|
狼尾草Pennisetum purpereum | 35.24±0.38 | 25.12±3.74 | 21.51±1.33 | [ |
菹草Curly-leaf pondweed | 33.60±0.20 | 12.00±1.20 | 16.70±1.80 | [ |
玉米秸秆Corn stover | 37.19±0.26 | 19.20±0.02 | 16.63±0.08 | [ |
玉米芯Corncob | 32.70±0.72 | 28.54±0.85 | 13.91±0.66 | [ |
小麦秸秆Wheat straw | 40.60±0.50 | 24.80±0.50 | 18.20±0.50 | [ |
松木Pine wood | 47.36±0.20 | 16.48±0.27 | 25.16±0.20 | [ |
杨木Poplar wood | 44.00±0.50 | 18.40±0.10 | 23.00±0.60 | [ |
杨木弃物Poplar waste | 40.59±0.12 | 13.78±0.06 | 27.24±1.26 | 本实验室数据Our laboratory data |
Table 1 Contents of different lignocellulose raw material components
种类Type | 纤维素Cellulose/% | 半纤维素Hemicellulose/% | 木质素Lignin/% | 参考文献References |
---|---|---|---|---|
狼尾草Pennisetum purpereum | 35.24±0.38 | 25.12±3.74 | 21.51±1.33 | [ |
菹草Curly-leaf pondweed | 33.60±0.20 | 12.00±1.20 | 16.70±1.80 | [ |
玉米秸秆Corn stover | 37.19±0.26 | 19.20±0.02 | 16.63±0.08 | [ |
玉米芯Corncob | 32.70±0.72 | 28.54±0.85 | 13.91±0.66 | [ |
小麦秸秆Wheat straw | 40.60±0.50 | 24.80±0.50 | 18.20±0.50 | [ |
松木Pine wood | 47.36±0.20 | 16.48±0.27 | 25.16±0.20 | [ |
杨木Poplar wood | 44.00±0.50 | 18.40±0.10 | 23.00±0.60 | [ |
杨木弃物Poplar waste | 40.59±0.12 | 13.78±0.06 | 27.24±1.26 | 本实验室数据Our laboratory data |
预处理方式 Preprocessing method | 试剂 Reagent | 方法 Method | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
稀酸Dilute acid | 硫酸Sulphuric acid | 酸法Acid process | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
蒸汽爆破Steam explosion | 蒸馏水Distilled water | 蒸汽爆破Steam explosion | 预处理时间短、可连续处理、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
稀碱Dilute alkali | 氢氧化钠Sodium hydrate | 碱法Alkaline process | 预处理条件温和、不产生抑制物、能脱除少部分木质素 | 破坏能力较弱、纤维素和半纤维素损失、木质素脱除不彻底 |
低共熔溶剂Deep eutectic solvents | 低共熔溶剂Deep eutectic solvents | 离子液体Ionic liquid | 预处理条件温和、不产生抑制物、能脱除部分木质素、可重复利用 | 半纤维素损失 |
碱性磺化-蒸汽爆破Alkaline sulfonation-steam explosion | 硫酸钠、碳酸氢钠Sodium sulfate, baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
碱性氧化-蒸汽爆破Alkaline oxidation-steam explosion | 碳酸氢钠Baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
稀酸-稀碱Dilute acid-alkali | 硫酸、氢氧化钠Sulphuric acid, sodium hydrate | 组合法Combination method | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 纤维素损失、木质素脱除不彻底 |
乙酸-亚氯酸钠Acetic acid-sodium chlorite | 乙酸、亚氯酸钠Acetic acid, sodium chlorite | 组合法Combination method | 操作简单、成本廉价、预处理条件温和、能脱除部分木质素、有效水解半纤维素 | 试剂本身具有一定毒性、产生抑制物 |
Table 2 Comparison of different preprocessing methods
预处理方式 Preprocessing method | 试剂 Reagent | 方法 Method | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
稀酸Dilute acid | 硫酸Sulphuric acid | 酸法Acid process | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
蒸汽爆破Steam explosion | 蒸馏水Distilled water | 蒸汽爆破Steam explosion | 预处理时间短、可连续处理、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
稀碱Dilute alkali | 氢氧化钠Sodium hydrate | 碱法Alkaline process | 预处理条件温和、不产生抑制物、能脱除少部分木质素 | 破坏能力较弱、纤维素和半纤维素损失、木质素脱除不彻底 |
低共熔溶剂Deep eutectic solvents | 低共熔溶剂Deep eutectic solvents | 离子液体Ionic liquid | 预处理条件温和、不产生抑制物、能脱除部分木质素、可重复利用 | 半纤维素损失 |
碱性磺化-蒸汽爆破Alkaline sulfonation-steam explosion | 硫酸钠、碳酸氢钠Sodium sulfate, baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
碱性氧化-蒸汽爆破Alkaline oxidation-steam explosion | 碳酸氢钠Baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
稀酸-稀碱Dilute acid-alkali | 硫酸、氢氧化钠Sulphuric acid, sodium hydrate | 组合法Combination method | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 纤维素损失、木质素脱除不彻底 |
乙酸-亚氯酸钠Acetic acid-sodium chlorite | 乙酸、亚氯酸钠Acetic acid, sodium chlorite | 组合法Combination method | 操作简单、成本廉价、预处理条件温和、能脱除部分木质素、有效水解半纤维素 | 试剂本身具有一定毒性、产生抑制物 |
因素Factor | 分类Classification | 特点Characteristic |
---|---|---|
酶体系Enzyme system | 内切葡聚糖酶Endo-1,4-β-D-glucanase | 随机劈开纤维素纤维内部的β-1,4糖苷键 |
外切葡聚糖酶Exo-1,4-β-D-glucannase | 从游离链末端依次切割纤维二糖单元 | |
β-葡萄糖苷酶β-1,4- glucosidase | 水解纤维二糖释放葡萄糖单元 | |
木聚糖酶Xylanase | 降解预处理未能解聚的半纤维素 | |
裂解多糖单加氧酶Lytic polysaccharide monooxygenase | 具有氧化裂解作用,破坏纤维素的结晶结构,提供更多的酶解结合位点 | |
菌种选育Strain breeding | 里氏木霉Trichoderma reesei | 具有抗代谢抑制能力,生长环境要求较低,菌株安全无毒,酶组分易于提取I |
青霉Penicillium | 酶组分比较齐全,各酶组分之间的比例较为均衡 | |
酶解方式 Enzymatic method | 高固底物High solid loading | 通过高固载量,提高水解液糖浓度 |
分批补料Fed-batch | 具有较高的流动性,底物与纤维素酶接触更充分 |
Table 3 Factors affecting the enzymatic digestion of the pretreatment ingredients
因素Factor | 分类Classification | 特点Characteristic |
---|---|---|
酶体系Enzyme system | 内切葡聚糖酶Endo-1,4-β-D-glucanase | 随机劈开纤维素纤维内部的β-1,4糖苷键 |
外切葡聚糖酶Exo-1,4-β-D-glucannase | 从游离链末端依次切割纤维二糖单元 | |
β-葡萄糖苷酶β-1,4- glucosidase | 水解纤维二糖释放葡萄糖单元 | |
木聚糖酶Xylanase | 降解预处理未能解聚的半纤维素 | |
裂解多糖单加氧酶Lytic polysaccharide monooxygenase | 具有氧化裂解作用,破坏纤维素的结晶结构,提供更多的酶解结合位点 | |
菌种选育Strain breeding | 里氏木霉Trichoderma reesei | 具有抗代谢抑制能力,生长环境要求较低,菌株安全无毒,酶组分易于提取I |
青霉Penicillium | 酶组分比较齐全,各酶组分之间的比例较为均衡 | |
酶解方式 Enzymatic method | 高固底物High solid loading | 通过高固载量,提高水解液糖浓度 |
分批补料Fed-batch | 具有较高的流动性,底物与纤维素酶接触更充分 |
方式Way | 分类Classification | 特点Characteristic |
---|---|---|
水解液脱毒Hydrolysate detoxication | 化学法Chemical method | 利用化学试剂,通过一次性加入,降低抑制物对发酵微生物的毒性 |
物理法Physical method | 利用抑制物特性,采用物理方法将其从水解液中进行分离 | |
组合法Combination method | 结合化学法和物理法的优点,能够显著降低水解液的毒性 | |
微生物定制Microbial customization | 非理性改造Irrational transformation | 通过诱变及适应性进化等非理性的方式获得突变微生物 |
理性改造Rational transformation | 通过基因工程、代谢工程及合成生物学等技术对微生物进行理性改造 | |
发酵方式选择Selection of fermentation mode | 间歇发酵Intermittent fermentation | 操作简单、不容易染菌、投资低、生产能力低、产品质量不稳定 |
连续发酵Continuous fermentation | 可长期连续进行、生产能力高、产品质量稳定、生产操作控制要求高、投资高、杂菌污染 | |
批式流加发酵Fed-batch fermentation | 可长期连续进行、生产能力高、产品质量稳定、可解除营养物基质的抑制和产物反馈抑制、提高产物的转化率 | |
发酵过程控制Fermentation process control | pH | 有效提高发酵液发酵性能,缓解弱酸类抑制物毒性 |
通气量Ventilatory capacity | 控制菌体生长,使更多的可发酵性糖流向产物合成 | |
温度Temperature | 影响酶反应的速率,影响微生物的代谢调控机制,影响发酵液的理化性质 | |
种子活化Strain activation | 影响微生物发酵能力,影响产物产量和转化效率 |
Table 4 Ways to improve the fermentation performance of the raw material hydrolysate
方式Way | 分类Classification | 特点Characteristic |
---|---|---|
水解液脱毒Hydrolysate detoxication | 化学法Chemical method | 利用化学试剂,通过一次性加入,降低抑制物对发酵微生物的毒性 |
物理法Physical method | 利用抑制物特性,采用物理方法将其从水解液中进行分离 | |
组合法Combination method | 结合化学法和物理法的优点,能够显著降低水解液的毒性 | |
微生物定制Microbial customization | 非理性改造Irrational transformation | 通过诱变及适应性进化等非理性的方式获得突变微生物 |
理性改造Rational transformation | 通过基因工程、代谢工程及合成生物学等技术对微生物进行理性改造 | |
发酵方式选择Selection of fermentation mode | 间歇发酵Intermittent fermentation | 操作简单、不容易染菌、投资低、生产能力低、产品质量不稳定 |
连续发酵Continuous fermentation | 可长期连续进行、生产能力高、产品质量稳定、生产操作控制要求高、投资高、杂菌污染 | |
批式流加发酵Fed-batch fermentation | 可长期连续进行、生产能力高、产品质量稳定、可解除营养物基质的抑制和产物反馈抑制、提高产物的转化率 | |
发酵过程控制Fermentation process control | pH | 有效提高发酵液发酵性能,缓解弱酸类抑制物毒性 |
通气量Ventilatory capacity | 控制菌体生长,使更多的可发酵性糖流向产物合成 | |
温度Temperature | 影响酶反应的速率,影响微生物的代谢调控机制,影响发酵液的理化性质 | |
种子活化Strain activation | 影响微生物发酵能力,影响产物产量和转化效率 |
[1] |
Ramamurthy PC, Singh S, Kapoor D, et al. Microbial biotechnological approaches: renewable bioprocessing for the future energy systems[J]. Microb Cell Fact, 2021, 20(1): 55.
doi: 10.1186/s12934-021-01547-w pmid: 33653344 |
[2] |
Ahmad A, Muria SR, Tuljannah M. Production of second generation bioethanol from palm fruit fiber biomass using Saccharomyces cerevisiae[J]. J Phys: Conf Ser, 2019, 1295(1): 012030.
doi: 10.1088/1742-6596/1295/1/012030 |
[3] |
Branco R, Serafim L, Xavier A. Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock[J]. Fermentation, 2018, 5(1): 4.
doi: 10.3390/fermentation5010004 URL |
[4] |
Ouyang SP, Qiao H, Xu Q, et al. Development of two-step pretreatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production[J]. Cellulose, 2019, 26(15): 8513-8524.
doi: 10.1007/s10570-019-02519-5 |
[5] |
Bay MS, Karimi K, Nasr Esfahany M, et al. Structural modification of pine and poplar wood by alkali pretreatment to improve ethanol production[J]. Ind Crops Prod, 2020, 152: 112506.
doi: 10.1016/j.indcrop.2020.112506 URL |
[6] | Yang MY, Lan M, Gao XF, et al. Sequential dilute acid/alkali pretreatment of corncobs for ethanol production[J]. Energy Sources A Recovery Util Environ Eff, 2021, 43(14): 1769-1778. |
[7] |
Mkabayi L, Malgas S, Wilhelmi BS, et al. Evaluating feruloyl esterase-xylanase synergism for hydroxycinnamic acid and xylo-oligosaccharide production from untreated, hydrothermally pre-treated and dilute-acid pre-treated corn cobs[J]. Agronomy, 2020, 10(5): 688.
doi: 10.3390/agronomy10050688 URL |
[8] |
Zhao QH, Wang L, Chen HZ. Effect of novel pretreatment of steam explosion associated with ammonium sulfite process on enzymatic hydrolysis of corn straw[J]. Appl Biochem Biotechnol, 2019, 189(2): 485-497.
doi: 10.1007/s12010-019-03018-w pmid: 31049884 |
[9] |
Hemansi, Gupta R, Aswal VK, et al. Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: insight from small angle neutron scattering(SANS)[J]. Renew Energy, 2020, 147: 2091-2101.
doi: 10.1016/j.renene.2019.10.003 URL |
[10] | 尹艺冉, 王进, 彭书传, 等. 酸处理菹草制备生物乙醇和甲烷过程研究[J]. 合肥工业大学学报: 自然科学版, 2015, 38(1): 103-108. |
Yin YR, Wang J, Peng SC, et al. Research on preparation process of bio-ethanol and methane with acid pretreated curly-leaf pondweed[J]. J Hefei Univ Technol Nat Sci, 2015, 38(1): 103-108. | |
[11] | 陈乐, 左然然, 李建安, 等. 狼尾草高底物同步糖化乙醇发酵全残留物产甲烷特性研究[J]. 太阳能学报, 2020, 41(3): 345-350. |
Chen L, Zuo RR, Li JA, et al. Methane production characteristics of stillage from ethanol fermentation of Pennisetum purpereum[J]. Acta Energiae Solaris Sin, 2020, 41(3): 345-350. | |
[12] |
Zhang JZ, Qu XX, Zhu GY, et al. An optimum combined hydrolysis factor enhances hybrid Pennisetum pretreatment in bio-conversion[J]. Cellulose, 2019, 26(15): 8439-8451.
doi: 10.1007/s10570-019-02561-3 |
[13] | 田芳, 李凡, 袁敬伟, 等. 纤维素乙醇产业现状及关键过程技术难点[J]. 当代化工, 2019, 48(9): 2051-2056. |
Tian F, Li F, Yuan JW, et al. Industrialization status and key process technical difficulties of cellulose ethanol[J]. Contemp Chem Ind, 2019, 48(9): 2051-2056. | |
[14] |
Straub CT, Khatibi PA, Wang JP, et al. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii[J]. Nat Commun, 2019, 10: 3548.
doi: 10.1038/s41467-019-11376-6 |
[15] |
Sánchez ÓJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresour Technol, 2008, 99(13): 5270-5295.
doi: 10.1016/j.biortech.2007.11.013 URL |
[16] |
Bonawitz ND, Chapple C. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?[J]. Curr Opin Biotechnol, 2013, 24(2): 336-343.
doi: 10.1016/j.copbio.2012.11.004 URL |
[17] |
Ying WJ, Xu Y, Zhang JH. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar[J]. Bioresour Technol, 2021, 321: 124472.
doi: 10.1016/j.biortech.2020.124472 URL |
[18] | 陈胜杰, 高翔, 袁戎宇. 玉米秸秆生产燃料乙醇的SHF发酵工艺优化[J]. 发酵科技通讯, 2020, 49(1): 32-36, 53 |
Chen SJ, Gao X, Yuan RY. Optimizing the SHF fermentation process to increase production of fuel ethanol based on corn stover[J]. Fajiao Keji Tongxun, 2020, 49(1): 32-36, 53 | |
[19] |
Jing YY, Li F, Li YM, et al. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: effect of liquid-solid ratio[J]. Bioresour Technol, 2022, 349: 126867.
doi: 10.1016/j.biortech.2022.126867 URL |
[20] |
Zhu SD, Huang WX, Huang WJ, et al. Coproduction of xylose, lignosulfonate and ethanol from wheat straw[J]. Bioresour Technol, 2015, 185: 234-239.
doi: 10.1016/j.biortech.2015.02.115 URL |
[21] |
Meenakshisundaram S, Fayeulle A, Leonard E, et al. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass-A review[J]. Bioresour Technol, 2021, 331: 125053.
doi: 10.1016/j.biortech.2021.125053 URL |
[22] |
Vermaas JV, Petridis L, Qi XH, et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction[J]. Biotechnol Biofuels, 2015, 8(1): 1-16.
doi: 10.1186/s13068-014-0179-6 URL |
[23] |
Rivas S, Rigual V, Domínguez JC, et al. A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses[J]. Food Bioprod Process, 2020, 123: 398-408.
doi: 10.1016/j.fbp.2020.07.018 URL |
[24] |
Tan LP, Liu ZY, Zhang TT, et al. Enhanced enzymatic digestibility of poplar wood by quick hydrothermal treatment[J]. Bioresour Technol, 2020, 302: 122795.
doi: 10.1016/j.biortech.2020.122795 URL |
[25] | 苏秀茹, 傅英娟, 李宗全, 等. 木质素的分离提取与高值化应用研究进展[J]. 大连工业大学学报, 2021, 40(2): 107-115. |
Su XR, Fu YJ, Li ZQ, et al. Research progress on extraction and high-value application of lignin[J]. J Dalian Polytech Univ, 2021, 40(2): 107-115. | |
[26] | 孙卓华, 王雪琪, 袁同琦. 基于木质素优先降解策略的木质素高值化利用研究进展[J]. 林业工程学报, 2022, 7(4): 1-12. |
Sun ZH, Wang XQ, Yuan TQ. Recent advances in valorization of lignin based on the lignin-first depolymerization strategy[J]. J For Eng, 2022, 7(4): 1-12. | |
[27] |
Liu W, Wu RJ, Hu YY, et al. Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment[J]. Bioresour Technol, 2020, 316: 123920.
doi: 10.1016/j.biortech.2020.123920 URL |
[28] | 李亚茹, 时君友, 宋晓敏, 等. 玉米秸秆组分分离预处理方法的研究进展[J]. 林产工业, 2021, 58(10): 73-76, 79. |
Li YR, Shi JY, Song XM, et al. Research progress on separation and pretreatment methods of corn straw components[J]. China For Prod Ind, 2021, 58(10): 73-76, 79. | |
[29] |
Guo YJ, Huang JM, Xu N, et al. A detoxification-free process for enhanced ethanol production from corn fiber under semi-simultaneous saccharification and fermentation[J]. Front Microbiol, 2022, 13: 861918.
doi: 10.3389/fmicb.2022.861918 URL |
[30] |
Ziegler-Devin I, Chrusciel L, Brosse N. Steam explosion pretreatment of lignocellulosic biomass: a mini-review of theorical and experimental approaches[J]. Front Chem, 2021, 9: 705358.
doi: 10.3389/fchem.2021.705358 URL |
[31] |
Biswas R, Teller PJ, Khan MU, et al. Sugar production from hybrid poplar sawdust: optimization of enzymatic hydrolysis and wet explosion pretreatment[J]. Molecules, 2020, 25(15): 3396.
doi: 10.3390/molecules25153396 URL |
[32] |
Tang Y, Dou XL, Hu JG, et al. Lignin sulfonation and SO2 addition enhance the hydrolyzability of deacetylated and then steam-pretreated poplar with reduced inhibitor formation[J]. Appl Biochem Biotechnol, 2018, 184(1): 264-277.
doi: 10.1007/s12010-017-2545-x |
[33] |
Zhu JY, Wan CX, Li YB. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment[J]. Bioresour Technol, 2010, 101(19): 7523-7528.
doi: 10.1016/j.biortech.2010.04.060 URL |
[34] | 皮奇峰, 朱妤婷, 吕微, 等. 低共熔溶剂低温预处理杨木及三组分结构演变规律研究[J]. 燃料化学学报, 2021, 49(12): 1791-1801. |
Pi QF, Zhu YT, Lv W, et al. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. J Fuel Chem Technol, 2021, 49(12): 1791-1801.
doi: 10.1016/S1872-5813(21)60086-5 URL |
|
[35] | 周敏姑, 郭英杰, 郝子越, 等. 氯化胆碱/乳酸低共熔溶剂预处理对杨木酶水解特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2020, 48(12): 55-63. |
Zhou MG, Guo YJ, Hao ZY, et al. Effects of choline chloride/lactic acid deep eutectic solvents pretreatment on enzymatic hydrolysis of poplar[J]. J Northwest A F Univ Nat Sci Ed, 2020, 48(12): 55-63. | |
[36] | 储秋露, 陈雪艳, 宋凯, 等. 两步法预处理对杨木酶水解及木质素吸附性能的影响[J]. 林产化学与工业, 2019, 39(6): 68-74. |
Chu QL, Chen XY, Song K, et al. Effects of two-stage pretreatment on enzymatic hydrolysis of poplar and adsorption performance of lignin[J]. Chem Ind For Prod, 2019, 39(6): 68-74. | |
[37] |
Shi FX, Wang YJ, Davaritouchaee M, et al. Directional structure modification of poplar biomass-inspired high efficacy of enzymatic hydrolysis by sequential dilute acid-alkali treatment[J]. ACS Omega, 2020, 5(38): 24780-24789.
doi: 10.1021/acsomega.0c03419 pmid: 33015496 |
[38] |
Wen PY, Zhang T, Xu Y, et al. Co-production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and sodium chlorite pretreatment[J]. Ind Crops Prod, 2020, 152: 112500.
doi: 10.1016/j.indcrop.2020.112500 URL |
[39] |
Du J, Liang JR, Gao XH, et al. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods[J]. Bioresour Technol, 2020, 295: 122272.
doi: 10.1016/j.biortech.2019.122272 URL |
[40] | 宋晓菲, 冯超. 裂解性多糖单加氧酶及其应用研究进展[J]. 微生物学报, 2023. DOI: 10.13343/j.cnki.wsxb.20220798. |
Song XF, Feng C. Lytic polysaccharide monooxygenase and its application[J]. J Microbiol, 2023. DOI: 10.13343/j.cnki.wsxb.20220798. | |
[41] |
Pant S, Ritika, Nag P, et al. Employment of the CRISPR/Cas9 system to improve cellulase production in Trichoderma reesei[J]. Biotechnol Adv, 2022, 60: 108022.
doi: 10.1016/j.biotechadv.2022.108022 URL |
[42] | 顾斌涛, 熊大维. 里氏木霉固态发酵产β-葡萄糖苷酶的研究[J]. 安徽农业科学, 2020, 48(18): 1-3. |
Gu BT, Xiong DW. Study on solid-state fermentation of Trichoderma reesei to produce β-glucosidase[J]. J Anhui Agric Sci, 2020, 48(18): 1-3. | |
[43] | 刘国栋, 高丽伟, 曲音波. 青霉生产木质纤维素降解酶系的研究进展[J]. 生物工程学报, 2021, 37(3): 1058-1069. |
Liu GD, Gao LW, Qu YB. Progress in the production of lignocellulolytic enzyme systems using Penicillium species[J]. Chin J Biotechnol, 2021, 37(3): 1058-1069. | |
[44] | 曲音波, 刘国栋, 赵建. 纤维素乙醇产业化的技术突破点之一——原料和预处理工艺特异性的高效纤维降解复合酶系就地生产[J]. 高科技与产业化, 2018(6): 64-68. |
Qu YB, Liu GD, Zhao J. One of the technical breakthroughs in the industrialization of cellulose ethanol—on-site production of high-efficiency fiber degradation complex enzyme system with specific raw materials and pretreatment process[J]. High Technol Commer, 2018(6): 64-68. | |
[45] |
Ying WJ, Zhu JJ, Xu Y, et al. High solid loading enzymatic hydrolysis of acetic acid-peroxide/acetic acid pretreated poplar and cellulase recycling[J]. Bioresour Technol, 2021, 340: 125624.
doi: 10.1016/j.biortech.2021.125624 URL |
[46] |
da Silva AS, Espinheira RP, Teixeira RSS, et al. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review[J]. Biotechnol Biofuels, 2020, 13: 58.
doi: 10.1186/s13068-020-01697-w pmid: 32211072 |
[47] |
Vanmarcke G, Demeke MM, Foulquié-Moreno MR, et al. Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates[J]. Biotechnol Biofuels, 2021, 14(1): 92.
doi: 10.1186/s13068-021-01935-9 pmid: 33836811 |
[48] |
Hong JW, Gam DH, Kim JH, et al. Process development for the detoxification of fermentation inhibitors from acid pretreated microalgae hydrolysate[J]. Molecules, 2021, 26(9): 2435.
doi: 10.3390/molecules26092435 URL |
[49] |
Cámara E, Olsson L, Zrimec J, et al. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates[J]. Biotechnol Adv, 2022, 57: 107947.
doi: 10.1016/j.biotechadv.2022.107947 URL |
[50] |
Abdulrahman A, van Walsum GP, Um BH. Acetic acid removal from pre-pulping wood extract with recovery and recycling of extraction solvents[J]. Appl Biochem Biotechnol, 2019, 187(1): 378-395.
doi: 10.1007/s12010-018-2826-z pmid: 29961903 |
[51] |
Mechmech F, Chadjaa H, Rahni M, et al. Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal[J]. Bioresour Technol, 2015, 192: 287-295.
doi: 10.1016/j.biortech.2015.05.012 URL |
[52] |
Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, et al. Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production[J]. Bioresour Technol, 2019, 286: 121403.
doi: 10.1016/j.biortech.2019.121403 URL |
[53] |
Zhang Y, Xia CL, Lu MM, et al. Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates[J]. Biotechnol Biofuels, 2018, 11: 178.
doi: 10.1186/s13068-018-1182-0 pmid: 29983741 |
[54] |
Kondaveeti S, Pagolu R, Patel SKS, et al. Bioelectrochemical detoxification of phenolic compounds during enzymatic pre-treatment of rice straw[J]. J Microbiol Biotechnol, 2019, 29(11): 1760-1768.
doi: 10.4014/jmb.1909.09042 URL |
[55] | 张强, Thygesen A, Thomsen A. 不同脱毒方法对玉米秸秆水解液酒精发酵的影响[J]. 化工进展, 2011, 30(4): 739-742. |
Zhang Q, Thygesen A, Thomsen A. Effect of different detoxification methods on ethanol production from corn stover hydrolysate[J]. Chem Ind Eng Prog, 2011, 30(4): 739-742. | |
[56] | 徐勇, 顾依娜, 范丽, 等. 杨木稀酸预处理液木糖发酵产乙醇工艺条件的研究[J]. 林产化学与工业, 2010, 30(3): 19-23. |
Xu Y, Gu YN, Fan L, et al. Study on the processing conditions of xylose fermentation to produce fuel ethanol from dilute-acid pretreated poplar[J]. Chem Ind For Prod, 2010, 30(3): 19-23. | |
[57] | Salcedo A. Short note on Saccharomyces cerevisiae[J]. Fungal Genom Biol, 2022, 12(1): 1-2. |
[58] |
Baek SH, Kwon EY, Kim YH, et al. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2016, 100(6): 2737-2748.
doi: 10.1007/s00253-015-7174-0 URL |
[59] | 亓伟, 余强, 徐纯勋, 等. 酵母融合子F11葡萄糖木糖共发酵产乙醇性能及其耐毒性初探[J]. 太阳能学报, 2015, 36(6): 1403-1409. |
Qi W, Yu Q, Xu CX, et al. Evaluation on performanceandtoxic-toleranceabilityof yeast fusant f11 for ethanol production from glucose and xylose co-fermentation[J]. Acta Energiae Solaris Sin, 2015, 36(6): 1403-1409. | |
[60] |
Li HX, Shen Y, Wu ML, et al. Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production[J]. Bioresour Bioprocess, 2016, 3(1): 51.
doi: 10.1186/s40643-016-0126-4 URL |
[61] |
Wei FQ, Li ML, Wang M, et al. A C6/C5 co-fermenting Saccharomyces cerevisiae strain with the alleviation of antagonism between xylose utilization and robustness[J]. GCB Bioenergy, 2021, 13(1): 83-97.
doi: 10.1111/gcbb.v13.1 URL |
[62] |
Ye HK, He YD, Xie YX, et al. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways[J]. Bioresour Technol, 2020, 297: 122402.
doi: 10.1016/j.biortech.2019.122402 URL |
[63] |
Wei S, Bai PG, Liu YN, et al. A Thi2p regulatory network controls the post-glucose effect of xylose utilization in Saccharomyces cerevisiae[J]. Front Microbiol, 2019, 10: 1649.
doi: 10.3389/fmicb.2019.01649 URL |
[64] |
Wei S, Liu YN, Wu ML, et al. Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae[J]. Biotechnol Biofuels, 2018, 11: 112.
doi: 10.1186/s13068-018-1112-1 |
[65] |
Sharma S, Nair A, Sarma SJ. Biorefinery concept of simultaneous saccharification and co-fermentation: challenges and improvements[J]. Chem Eng Process Process Intensif, 2021, 169: 108634.
doi: 10.1016/j.cep.2021.108634 URL |
[66] |
Kim TH, Choi CH, Oh KK. Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation[J]. Bioresour Technol, 2013, 130: 306-313.
doi: 10.1016/j.biortech.2012.11.125 URL |
[67] |
Chen ST, Xu ZX, Ding BN, et al. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery[J]. Sci Adv, 2023, 9(5): eadd8835.
doi: 10.1126/sciadv.add8835 URL |
[68] |
Tufariello M, Grieco F. Advances in microbial fermentation processes[J]. Processes, 2021, 9(8): 1371.
doi: 10.3390/pr9081371 URL |
[69] |
Chai WY, Teo KTK, Tan MK, et al. Fermentation process control and optimization[J]. Chem Eng & Technol, 2022, 45(10): 1731-1747.
doi: 10.1002/ceat.v45.10 URL |
[70] |
Zhu YY, Wu L, Zhu JJ, et al. Quantitative lipidomic insights in the inhibitory response of Pichia stipitis to vanillin, 5-hydroxymethylfurfural, and acetic acid[J]. Biochem Biophys Res Commun, 2018, 497(1): 7-12.
doi: 10.1016/j.bbrc.2018.01.161 URL |
[71] |
Casey E, Sedlak M, Ho NWY, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2010, 10(4): 385-393.
doi: 10.1111/fyr.2010.10.issue-4 URL |
[72] |
Dietrich K, Dumont MJ, Schwinghamer T, et al. Model study to assess softwood hemicellulose hydrolysates as the carbon source for PHB production in Paraburkholderia sacchari IPT 101[J]. Biomacromolecules, 2018, 19(1): 188-200.
doi: 10.1021/acs.biomac.7b01446 pmid: 29182307 |
[73] |
Hernández-Cortés G, Valle-Rodríguez JO, Herrera-López EJ, et al. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration[J]. AMB Express, 2016, 6(1): 47.
doi: 10.1186/s13568-016-0218-8 pmid: 27447701 |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[3] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[4] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[5] | LIU Na, JIAO Jing-lin, RAO Zheng-hua. Research Progress in the Detection Methods of Short Chain Fatty Acids in Animal Samples [J]. Biotechnology Bulletin, 2022, 38(8): 84-91. |
[6] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[7] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
[8] | FAN Xu-jia, BIAN Yan-hui, YIN Hai-song , QIAO Chang-sheng. Optimization of Sample Pretreatment Method for Metabolomics Studies of Aureobasidium pullulans Producing Polymalic Acid [J]. Biotechnology Bulletin, 2016, 32(6): 54-59. |
[9] | WANG Hai-yan,, ZHU Zhi-xuan, JIN Jing ,DING Yi. The Optimization of Chromosome Preparation and Immunofluorescence Staining for Root Tip of Nelumbo nucifera [J]. Biotechnology Bulletin, 2016, 32(4): 74-79. |
[10] | Jiang Chao, Su Xiaoqin, Zhang Xuewen, Pan Yinghong. Pretreatment and Application of Membrane for Dot Hybridization [J]. Biotechnology Bulletin, 2015, 31(11): 121-124. |
[11] | Bai Yanbo, Li Jiao, Zhang Baolong, Xin Shigang, Bu Ning, Ma Lianju, Li Xuemei. Research Advance on Effect of Drought Stress on Mineral Elements of Plant [J]. Biotechnology Bulletin, 2013, 0(3): 15-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||