Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 126-135.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0001
Previous Articles Next Articles
HUANG Xiao-long1,2,3(), SUN Gui-lian1,2,3, MA Dan-dan1,2,3, YAN Hui-qing1()
Received:
2023-01-04
Online:
2023-09-26
Published:
2023-10-24
Contact:
YAN Hui-qing
E-mail:hxl2014gznu@126.com;yanhuiqing@gznu.edu.cn
HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice[J]. Biotechnology Bulletin, 2023, 39(9): 126-135.
用途Application | 引物名称Primer name | 序列 Sequences(5'-3') |
---|---|---|
启动子扩增 | LAZY1-F | ATTACCCACATTCATTTAGTTG |
LAZY1-R | CTTGGAAGCCGGTTTAGCGT | |
pHIS2-LAZY1的构建 | pHIS2-LAZY1-F | GAATTCATTACCCACATTCATTTAGT |
pHIS2-LAZY1-R | ACGCGTCTTGGAAGCCGGTTTAGCGT | |
pAbAi-LAZY1的构建 | pAbAi-LAZY1-F | CGAGCTCGTGTAAATTCGCGGTTAATT |
pAbAi-LAZY1-R | CCCGGGGTGAGTCGTATTACAATTC | |
pGADT7-OsMBF1的构建 | pGADT7-OsMBF1-F | CGGGATCCGGCCGGGATTGGTCCGATC |
pGADT7-OsMBF1-R | CGAGCTCGCCCCCCCTCGAGTTTCTT | |
文库检测 | T7引物 | TAATACGACTCACTATAGGGC |
AD引物 | GTGAACTTGCGGGGTTTTTC | |
190LUC-LAZY1的构建 | LUC -LAZY1-F | TTTGGAGAGGACACGCTGGATCCATTACCCACATTCAT |
LUC- LAZY1-R | ATAGTAATTGTAATGGATCTGCTTGGAAGCCGGTTTA | |
none-OsMBF1 | OsMBF1-F | ACTAGTGGATCCCCCGGGCTGATGGCCGGGATTGGTCC |
OsMBF1-R | GGTACCGGGCCCCCCCTCGAGTTTCTTGCCGCGCAGCT |
Table 1 Primers used in this study
用途Application | 引物名称Primer name | 序列 Sequences(5'-3') |
---|---|---|
启动子扩增 | LAZY1-F | ATTACCCACATTCATTTAGTTG |
LAZY1-R | CTTGGAAGCCGGTTTAGCGT | |
pHIS2-LAZY1的构建 | pHIS2-LAZY1-F | GAATTCATTACCCACATTCATTTAGT |
pHIS2-LAZY1-R | ACGCGTCTTGGAAGCCGGTTTAGCGT | |
pAbAi-LAZY1的构建 | pAbAi-LAZY1-F | CGAGCTCGTGTAAATTCGCGGTTAATT |
pAbAi-LAZY1-R | CCCGGGGTGAGTCGTATTACAATTC | |
pGADT7-OsMBF1的构建 | pGADT7-OsMBF1-F | CGGGATCCGGCCGGGATTGGTCCGATC |
pGADT7-OsMBF1-R | CGAGCTCGCCCCCCCTCGAGTTTCTT | |
文库检测 | T7引物 | TAATACGACTCACTATAGGGC |
AD引物 | GTGAACTTGCGGGGTTTTTC | |
190LUC-LAZY1的构建 | LUC -LAZY1-F | TTTGGAGAGGACACGCTGGATCCATTACCCACATTCAT |
LUC- LAZY1-R | ATAGTAATTGTAATGGATCTGCTTGGAAGCCGGTTTA | |
none-OsMBF1 | OsMBF1-F | ACTAGTGGATCCCCCGGGCTGATGGCCGGGATTGGTCC |
OsMBF1-R | GGTACCGGGCCCCCCCTCGAGTTTCTTGCCGCGCAGCT |
Fig. 1 Cloning of rice LAZY1 promoter and its sequence A: Cloning of LAZY1 promoter. M: DL 2000 DNA marker; LAZY1: the amplified fragment of LAZY1 promoter. B: Scheme map and sequencing results of cloned LAZY1 promoter
名称Name | 序列Sequence | 功能Functions |
---|---|---|
TATA-box | TATATA(AA) | -30转录起始结合 |
CAAT-box | CC(A)AAT/ TGCCAAC | 启动子和增强子共同作用的顺式作用元件 |
ABRE | ACGTG/CACGTG | 脱落酸响应 |
ATCT-motif | AATCTAATCC | 光响应元件 |
Box 4 | ATTAAT | 光响应元件 |
TCCC-motif | TCTCCCT | 光响应元件 |
GATA-motif | GATAGGA/ GATAGGG | 光响应元件 |
G-box | CACGAC/ CACGTC/ CACGTG | 光响应元件 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用的调控元件 |
circadian | CAAAGATATC | 光周期调控元件 |
CGTCA-motif | CGTCA | 茉莉酸甲酯响应元件 |
TGACG-motif | TGACG | 茉莉酸甲酯响应元件 |
MBS | CAACTG | 参与干旱诱导的MYB结合位点 |
MRE | AACCTAA | 参与光响应的MYB结合位点 |
MSA-like | TCAAACGGT | 参与细胞周期调节的顺式作用元件 |
TGA-element | AACGAC | 生长素响应元件 |
MYC | CATGTG | 功能未知 |
WRE3 | CCACCT | 功能未知 |
W box | TTGACC | 功能未知 |
Table 2 cis-acting elements in LAZY1 promoter
名称Name | 序列Sequence | 功能Functions |
---|---|---|
TATA-box | TATATA(AA) | -30转录起始结合 |
CAAT-box | CC(A)AAT/ TGCCAAC | 启动子和增强子共同作用的顺式作用元件 |
ABRE | ACGTG/CACGTG | 脱落酸响应 |
ATCT-motif | AATCTAATCC | 光响应元件 |
Box 4 | ATTAAT | 光响应元件 |
TCCC-motif | TCTCCCT | 光响应元件 |
GATA-motif | GATAGGA/ GATAGGG | 光响应元件 |
G-box | CACGAC/ CACGTC/ CACGTG | 光响应元件 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用的调控元件 |
circadian | CAAAGATATC | 光周期调控元件 |
CGTCA-motif | CGTCA | 茉莉酸甲酯响应元件 |
TGACG-motif | TGACG | 茉莉酸甲酯响应元件 |
MBS | CAACTG | 参与干旱诱导的MYB结合位点 |
MRE | AACCTAA | 参与光响应的MYB结合位点 |
MSA-like | TCAAACGGT | 参与细胞周期调节的顺式作用元件 |
TGA-element | AACGAC | 生长素响应元件 |
MYC | CATGTG | 功能未知 |
WRE3 | CCACCT | 功能未知 |
W box | TTGACC | 功能未知 |
Fig. 2 Identification of positive pHIS2-LAZY1 transformed bait-yeast strains and the determination of minimum inhibitory concentration of 3-AT A: Identification of pHIS2-LAZY1 transformed bait-yeast strains by yeast colony PCR. M: DL2000 DNA marker. B-D: Identification of the minimum inhibitory concentration of 3-AT. The growth of yeast colony with pHIS2-LAZY1+AD on 0(B), 20(C), 40(D)mmol/L on the SD-LTH medium. E: The scheme map of various combinations
Fig. 3 Construction of YIH library A: Detection of total RNA. B: Electrophoretic diagram of purified cDNA library. C: Growth of bacteria in yeast library in 1/10 dilution. D: Growth of bacteria in yeast library in 1/100 dilution. E: The length of cDNA fragment inserted in yeast from randomly selected 22 colonies
基因ID Gene ID | 功能注释 Functional annotation | 基因名称 Gene name |
---|---|---|
LOC_Os11g07020 | 果糖-二磷酸醛缩酶,参与糖酵解和糖异生的生物学过程 | -- |
LOC_Os01g54940 | 线粒体互作蛋白,具有脱氢酶作用 | -- |
LOC_Os02g55140 | 亮氨酸氨基肽酶,参与细胞内蛋白质的加工和正常转运 | -- |
LOC_Os01g71670 | 内切1,3-β-葡聚糖酶,调节发芽种子的发育和激素 | OsGLN2[ |
LOC_Os12g19470 | 单加氧酶和二磷酸核酮糖羧化酶活性 | OsRBCS4[ |
LOC_Os11g44810 | 生长素抑制蛋白,影响腋芽的生长和分支 | -- |
LOC_Os02g15310 | 富含丝氨酸/精氨酸的SC35类剪接因子 | -- |
LOC_Os07g05360 | 光合系统蛋白pH依赖的PSII稳定蛋白 | -- |
LOC_Os04g20990 | 催化还原tRNA上尿苷残基的5,6-双键 | -- |
LOC_Os03g59310 | 40S核糖体S2,催化mRNA定向蛋白质合成 | -- |
LOC_Os12g08260 | 含有脱氢酶E1结构域的蛋白,2-氧异戊酸脱氢酶 | -- |
LOC_Os01g05670 | 脂质代谢过程中烯酰辅酶还原酶 | -- |
LOC_Os03g59320 | 具有伴侣蛋白类功能 | -- |
LOC_Os04g41620 | 几丁质家族蛋白质前体,催化几丁质聚合物中的水解 | -- |
LOC_Os05g01270 | 细胞色素,增强多种非生物胁迫耐受性 | OsCYP20-2[ |
LOC_Os08g33820 | 颗粒膜的黏附和磷酸化的光调控 | -- |
LOC_Os01g41710 | 颗粒膜的黏附和磷酸化的光调控 | -- |
LOC_Os12g07210 | 果糖-二磷酸醛缩酶,在糖酵解和糖异生中起关键作用 | -- |
LOC_Os08g27850 | 连接激素受体和TATA元素结合蛋白MBF1 | -- |
LOC_Os04g53620 | 通过其翻译后附着(泛素化)作用于其他蛋白质 | -- |
LOC_Os01g69950 | 核糖体蛋白L2,催化mRNA导向的蛋白质合成 | -- |
Table 3 Proteins interacted with LAZY1 promoter by Y1H screening
基因ID Gene ID | 功能注释 Functional annotation | 基因名称 Gene name |
---|---|---|
LOC_Os11g07020 | 果糖-二磷酸醛缩酶,参与糖酵解和糖异生的生物学过程 | -- |
LOC_Os01g54940 | 线粒体互作蛋白,具有脱氢酶作用 | -- |
LOC_Os02g55140 | 亮氨酸氨基肽酶,参与细胞内蛋白质的加工和正常转运 | -- |
LOC_Os01g71670 | 内切1,3-β-葡聚糖酶,调节发芽种子的发育和激素 | OsGLN2[ |
LOC_Os12g19470 | 单加氧酶和二磷酸核酮糖羧化酶活性 | OsRBCS4[ |
LOC_Os11g44810 | 生长素抑制蛋白,影响腋芽的生长和分支 | -- |
LOC_Os02g15310 | 富含丝氨酸/精氨酸的SC35类剪接因子 | -- |
LOC_Os07g05360 | 光合系统蛋白pH依赖的PSII稳定蛋白 | -- |
LOC_Os04g20990 | 催化还原tRNA上尿苷残基的5,6-双键 | -- |
LOC_Os03g59310 | 40S核糖体S2,催化mRNA定向蛋白质合成 | -- |
LOC_Os12g08260 | 含有脱氢酶E1结构域的蛋白,2-氧异戊酸脱氢酶 | -- |
LOC_Os01g05670 | 脂质代谢过程中烯酰辅酶还原酶 | -- |
LOC_Os03g59320 | 具有伴侣蛋白类功能 | -- |
LOC_Os04g41620 | 几丁质家族蛋白质前体,催化几丁质聚合物中的水解 | -- |
LOC_Os05g01270 | 细胞色素,增强多种非生物胁迫耐受性 | OsCYP20-2[ |
LOC_Os08g33820 | 颗粒膜的黏附和磷酸化的光调控 | -- |
LOC_Os01g41710 | 颗粒膜的黏附和磷酸化的光调控 | -- |
LOC_Os12g07210 | 果糖-二磷酸醛缩酶,在糖酵解和糖异生中起关键作用 | -- |
LOC_Os08g27850 | 连接激素受体和TATA元素结合蛋白MBF1 | -- |
LOC_Os04g53620 | 通过其翻译后附着(泛素化)作用于其他蛋白质 | -- |
LOC_Os01g69950 | 核糖体蛋白L2,催化mRNA导向的蛋白质合成 | -- |
Fig. 4 Detection for the transcriptional regulations of Os-MBF1 to LAZY1 promoter using Y1H and transient luciferase assay A: ProLAZY1::AbAi. B: The combination of ProLAZY1::AbAi and AD vector. C: The combination of ProLAZY1::AbAi and OsMBF-AD vector. D: Relative luciferase activity of control and OsMBF. **P-value<0.01
[1] | 区树俊, 汪鸿儒, 储成才. 亚洲栽培稻主要驯化性状研究进展[J]. 遗传, 2012, 34(11): 1379-1389. |
Ou SJ, Wang HR, Chu CC. Major domestication traits in Asian rice[J]. Hereditas, 2012, 34(11): 1379-1389. | |
[2] | 何芹. 水稻穗形基因OsAFB6和分蘖角度基因LAZY1的功能研究[D]. 武汉: 华中农业大学. |
He Q. Study on the function of ear shape gene OsAFB6 and tillering angle gene LAZY1 in rice[D]. Wuhan: Huazhong Agricultural University. | |
[3] |
Jones JW, Adair CR. A “lazy” mutation in rice[J]. J Hered, 1938, 29(8): 315-318.
doi: 10.1093/oxfordjournals.jhered.a104527 URL |
[4] |
Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and-independent gravity signaling pathways[J]. Plant Cell Physiol, 2007, 48(5): 678-688.
doi: 10.1093/pcp/pcm042 URL |
[5] |
Abe J, Morita S. Growth direction of nodal roots in rice: its variation and contribution to root system formation[J]. Plant Soil, 1994, 165(2): 333-337.
doi: 10.1007/BF00008078 URL |
[6] |
Godbolé R, Michalke W, Nick P, et al. Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles[J]. Plant Biol, 2000, 2(2): 176-181.
doi: 10.1055/s-2000-9154 URL |
[7] |
Türkan I, Suge H. Survey of endogenous gibberellins in a barley mutant showing abnormal response to gravity[J]. Jpn J Genet, 1991, 66(1): 41-48.
doi: 10.1266/jjg.66.41 URL |
[8] |
Van Overbeek J. Growth substance curvatures of avena in light and dark[J]. J Gen Physiol, 1936, 20(2): 283-309.
doi: 10.1085/jgp.20.2.283 pmid: 19872993 |
[9] |
Sang D, Chen D, Liu G, et al. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis[J]. PNAS, 2014, 111(30): 11199-11204.
doi: 10.1073/pnas.1411859111 pmid: 25028496 |
[10] |
Derbyshire P, Byrne ME. MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium[J]. Plant Physiol, 2013, 161(3): 1291-1302.
doi: 10.1104/pp.112.212340 pmid: 23355632 |
[11] |
Hollender CA, Hill JL Jr, Waite J, et al. Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in Arabidopsis[J]. Sci Rep, 2020, 10: 6051.
doi: 10.1038/s41598-020-62962-4 pmid: 32269265 |
[12] |
Dong ZB, Jiang C, Chen XY, et al. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response[J]. Plant Physiol, 2013, 163(3): 1306-1322.
doi: 10.1104/pp.113.227314 pmid: 24089437 |
[13] |
Zhang N, Yu H, Yu H, et al. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin[J]. Plant Cell, 2018, 30(7): 1461-1475.
doi: 10.1105/tpc.18.00063 URL |
[14] |
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Protoc, 2007, 2(1): 31-34.
doi: 10.1038/nprot.2007.13 pmid: 17401334 |
[15] |
Zong W, Tang N, Yang J, et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes[J]. Plant Physiol, 2016, 171(4): 2810-2825.
doi: 10.1104/pp.16.00469 pmid: 27325665 |
[16] |
Akiyama T, Pillai MA, Sentoku N. Cloning, characterization and expression of OsGLN2, a rice endo-1, 3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds[J]. Planta, 2004, 220(1): 129-139.
doi: 10.1007/s00425-004-1312-8 URL |
[17] |
Kashiwagi T, Togawa E, Hirotsu N, et al. Improvement of lodging resistance with QTLs for stem diameter in rice(Oryza sativa L.)[J]. Theor Appl Genet, 2008, 117(5): 749-757.
doi: 10.1007/s00122-008-0816-1 pmid: 18575836 |
[18] |
Trivedi DK, Yadav S, Vaid N, et al. Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast[J]. Plant Signal Behav, 2012, 7(12): 1653-1666.
doi: 10.4161/psb.22306 pmid: 23073011 |
[19] |
Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins[J]. Science, 1994, 265(5172): 615-621.
doi: 10.1126/science.8036511 pmid: 8036511 |
[20] |
Yang HJ, Zhou Y, Zhang YN, et al. Identification of transcription factors of nitrate reductase gene promoters and NRE2 cis-element through yeast one-hybrid screening in Nicotiana tabacum[J]. BMC Plant Biol, 2019, 19(1): 1-8.
doi: 10.1186/s12870-018-1600-2 |
[21] |
Dong CL, He F, Berkowitz O, et al. Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in rice(Oryza sativa)[J]. Plant Cell, 2018, 30(10): 2267-2285.
doi: 10.1105/tpc.18.00051 URL |
[22] |
Suzuki N, Sejima H, Tam R, et al. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana[J]. Plant J, 2011, 66(5): 844-851.
doi: 10.1111/j.1365-313X.2011.04550.x URL |
[23] |
Takemaru KI, Li FQ, Ueda H, et al. Multiprotein bridging factor 1(MBF1)is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein[J]. Proc Natl Acad Sci USA, 1997, 94(14): 7251-7256.
doi: 10.1073/pnas.94.14.7251 pmid: 9207077 |
[24] |
Nobuhiro S, Ludmila R, Liang HJ, et al. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c[J]. Plant Physiol, 2005, 139(3): 1313-1322.
doi: 10.1104/pp.105.070110 pmid: 16244138 |
[25] |
Jaimes-Miranda F, Chávez Montes RA. The plant MBF1 protein family: a bridge between stress and transcription[J]. J Exp Bot, 2020, 71(6): 1782-1791.
doi: 10.1093/jxb/erz525 pmid: 32037452 |
[26] |
Kim MJ, Lim GH, Kim ES, et al. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the Multiprotein bridging factor 1a(MBF1a)transcriptional coactivator gene[J]. Biochem Biophys Res Commun, 2007, 354(2): 440-446.
doi: 10.1016/j.bbrc.2006.12.212 URL |
[27] |
Qin DD, Wang F, Geng XL, et al. Overexpression of heat stress-responsive TaMBF1c, a wheat(Triticum aestivum L.) Multiprotein Bridging Factor, confers heat tolerance in both yeast and rice[J]. Plant Mol Biol, 2015, 87(1-2): 31-45.
doi: 10.1007/s11103-014-0259-9 URL |
[1] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[2] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[3] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[4] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[5] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[6] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[7] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[9] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[10] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[11] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[12] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[13] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[14] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[15] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||