Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 181-190.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0613
Previous Articles Next Articles
PI Yi-fei1,2(), SONG Xin-hui3, WANG Xi-lin1,2, LI Jin-jin1, SUN Chang-bin1, XU Wei1()
Received:
2024-07-01
Online:
2024-10-26
Published:
2024-11-20
Contact:
XU Wei
E-mail:piyifei0822@163.com;xuwei01@caas.cn
PI Yi-fei, SONG Xin-hui, WANG Xi-lin, LI Jin-jin, SUN Chang-bin, XU Wei. High-throughput Screening System for Functional R-loop Loci Based on R-loop Targeted Editing Technology[J]. Biotechnology Bulletin, 2024, 40(10): 181-190.
Fig. 1 Schematic diagram of R-loop targeted editing and high-throughput screening system A: Schematic diagram of targeted R-loop editing technology based on CRISPR/dCas9 and RNase H1 enzyme. B: Workflow schematic of high-throughput screening system for R-loops based on sgRNA lentiviral library construction
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
构建慢病毒载体 Constructing lentiviral vector | BamH1-T2A-XbaI | CGGGATCCGAGGGAAGAGGTTCCCTGCTCACATGCGG AGACGTAGAAGAGAATCCCGGACCCTCTAGAGC |
RNaseH1-T2A-F | CGGGATCCTTCTATGCCGTGAGGAGGGGC | |
RNaseH1-T2A-R | CGGGATCCTTCTATGCCGTGAGGAGGGGCGCTCTAGAGGTCATGGGTCCGGGATTCTCTTCTACGTCTCCGCATGTGAGCAGGGAACCTCTTCCCTCCCCTGAACCTGTACAGTTAATGTCTTCCGATTGTTTAGCTCCTTCTCTGGCT | |
dCas9 基因验证 Validating the dCas9 gene | dCas9-F | GAAGCAGCTTCGAGAAGAATCCCATCGAC |
dCas9-R | GTCGATGGTGGTGTCAAAGTACTTGAAGGCG | |
验证编辑效率 Editing efficiency validation | RPL13A-1-sgR | GCGTGCGCAGAGATTCCCCA |
RPL13A-2-sgR | CGCGTGCGCAGAGATTCCCC | |
RPL13A-3-sgR | GCTTCGACCAATGAAAACAC | |
CALM3-1-sgR | CCGTGGGAGCCGCAGTGCGG | |
CALM3-1-sgR | GATCCGTGGGAGCCGCAGTG | |
CALM3-1-sgR | CGGGGCGCGGAGGGATCCG | |
TFPT-1-sgR | GAGGAGAGGTGAGTGTGATG | |
TFPT-2-sgR | GAGAGGAGAGGTGAGTGTGA | |
TFPT-3-sgR | GCGACTAACGCTAGAAACAG | |
编辑效率验证DRIP-qPCR DRIP-qPCR for editing efficiency validation | RPL13A-F | AGGTGCCTTGCTCACAGAGT |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
CALM3-F | GAGGAATTGTGGCGTTGACT | |
CALM3-R | AGAGTGGCCAAATGAGCAGT | |
TFPT-F | TCTGGGAGTCCAAGCAGACT | |
TFPT-R | AAGGAGCCACTGAAGGGTTT | |
RPL13A-F | AGGTGCCTTGCTCACAGAGT | |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
EGR1neg-F | GAACGTTCAGCCTCGTTCTC | |
EGR1neg-R | GGAAGGTGGAAGGAAACACA | |
SNRPNneg-F | GCCAAATGAGTGAGGATGG | |
SNRPNneg-R | TCCTCTCTGCCTGACTCCAT |
Table 1 Primer sequences used for constructing R-loop targeting regulatory technology
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
构建慢病毒载体 Constructing lentiviral vector | BamH1-T2A-XbaI | CGGGATCCGAGGGAAGAGGTTCCCTGCTCACATGCGG AGACGTAGAAGAGAATCCCGGACCCTCTAGAGC |
RNaseH1-T2A-F | CGGGATCCTTCTATGCCGTGAGGAGGGGC | |
RNaseH1-T2A-R | CGGGATCCTTCTATGCCGTGAGGAGGGGCGCTCTAGAGGTCATGGGTCCGGGATTCTCTTCTACGTCTCCGCATGTGAGCAGGGAACCTCTTCCCTCCCCTGAACCTGTACAGTTAATGTCTTCCGATTGTTTAGCTCCTTCTCTGGCT | |
dCas9 基因验证 Validating the dCas9 gene | dCas9-F | GAAGCAGCTTCGAGAAGAATCCCATCGAC |
dCas9-R | GTCGATGGTGGTGTCAAAGTACTTGAAGGCG | |
验证编辑效率 Editing efficiency validation | RPL13A-1-sgR | GCGTGCGCAGAGATTCCCCA |
RPL13A-2-sgR | CGCGTGCGCAGAGATTCCCC | |
RPL13A-3-sgR | GCTTCGACCAATGAAAACAC | |
CALM3-1-sgR | CCGTGGGAGCCGCAGTGCGG | |
CALM3-1-sgR | GATCCGTGGGAGCCGCAGTG | |
CALM3-1-sgR | CGGGGCGCGGAGGGATCCG | |
TFPT-1-sgR | GAGGAGAGGTGAGTGTGATG | |
TFPT-2-sgR | GAGAGGAGAGGTGAGTGTGA | |
TFPT-3-sgR | GCGACTAACGCTAGAAACAG | |
编辑效率验证DRIP-qPCR DRIP-qPCR for editing efficiency validation | RPL13A-F | AGGTGCCTTGCTCACAGAGT |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
CALM3-F | GAGGAATTGTGGCGTTGACT | |
CALM3-R | AGAGTGGCCAAATGAGCAGT | |
TFPT-F | TCTGGGAGTCCAAGCAGACT | |
TFPT-R | AAGGAGCCACTGAAGGGTTT | |
RPL13A-F | AGGTGCCTTGCTCACAGAGT | |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
EGR1neg-F | GAACGTTCAGCCTCGTTCTC | |
EGR1neg-R | GGAAGGTGGAAGGAAACACA | |
SNRPNneg-F | GCCAAATGAGTGAGGATGG | |
SNRPNneg-R | TCCTCTCTGCCTGACTCCAT |
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
sgRNA文库PCR sgRNA library PCR | Lib-plasmid-F | TCGTCGGCAGCGTCTGTGGAAAGGACGAAACACC |
Lib-plasmid-R | GTCTCGTGGGCTCGGTGGCCAAGTTGATAACGGACTA | |
建库 | N5XX | AATGATACGGCGACCACCGAGATCTACAC[IIIIIIII]TCGTCGGCAGCGTC |
Library preparation | N7XX | CAAGCAGAAGACGGCATACGAGAT[IIIIIIII]GTCTCGTGGGCTCGG |
Table 2 sgRNA library construction primer sequences
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
sgRNA文库PCR sgRNA library PCR | Lib-plasmid-F | TCGTCGGCAGCGTCTGTGGAAAGGACGAAACACC |
Lib-plasmid-R | GTCTCGTGGGCTCGGTGGCCAAGTTGATAACGGACTA | |
建库 | N5XX | AATGATACGGCGACCACCGAGATCTACAC[IIIIIIII]TCGTCGGCAGCGTC |
Library preparation | N7XX | CAAGCAGAAGACGGCATACGAGAT[IIIIIIII]GTCTCGTGGGCTCGG |
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
合成R-loop功能位点sgRNA序列 Synthesize sgRNA sequences targeting R-loop functional sites | ZBTB20 | AGGAGCAAAATGAAGCAGAA |
TUBAL3 | TGGTCTCAGAGTAGCTGTGT | |
TMEM176A | CCCAGTGACCCTCGCGCAGC | |
TAF6 | AGGGAGGTTCTGGTGGAGCT | |
SPON2 | CTGCGTGGGGTGGTGATGAA | |
SOX14 | TCTGCTGCTGATTGGCGCCC | |
ACTRT1 | ATTGGCTCAGAGGCCCCACC | |
CARHSP1 | GAACGCAGAGCGCGGGACGT | |
CAMKK2 | AGCCGGCGGGGGCGCGCAGG | |
C4orf33 | GAATCACCCTTCCTTCTTCT | |
ZYG11A | AACAGAGAGGACCGTTAGAG | |
ZFY | AGTTCGGAGCTGACAAAAAG | |
CCDC71 | GTTCTTCAGACTTCTGCACA | |
CCDC30 | TTTGAGACTTTGCTGTTGTT | |
ZNF84 | GTGCAGTCCCCGACTCGTCC | |
TPP2 | GAGGAGTCTGAGGACATTAC | |
TXNRD1 | TAGCCCGTGTATCTTCTTCA | |
C9orf169 | CTCAGGTGATCCGCCTGCCT | |
CCM2 | GGGAAGTAGGGAAAATGAGC | |
C2orf74 | CTAATTTCTCTCCATAACTG | |
CCL22 | GTGGAGAAATTCTCTTTGGC | |
CA10 | TGAGGCTGAGCGCGGCCATG | |
CASP7 | GTGCGTATGCTGTGGGGTTG | |
CASC5 | ATTGTGGGGGAGGTCTCCAC | |
qPCR验证 qPCR validation | ZBTB20-F- | GCGTGGACAGGATCTACTCG |
ZBTB20-R- | ATCGTCCTCCATCTCCTGCT | |
SPON2-F | GCCAGAGCCCTGGCCAAATACAGCATC | |
SPON2-R | TCCTCCACATGCTGTAGTCGGAGCTATG | |
TPP2-F | TTCACACCCAGGCTCAAGAC | |
TPP2-R | TGCAAATTTAAGGCCTCTCCC | |
ZNF84-F | ATCTCCTACCCACGGCTCTT | |
ZNF84-R | AAGGAGAAGAGCCGTGGGTA | |
C4orf33-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf33-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
ACTRT1-F | TGTCATCAGCTCCGTCTTGG | |
ACTRT1-R | TACCAGTCCACGCTCAATGG | |
ZYF-F | TGTTCCTGATGACCCAGACTC | |
ZYF-R | ATCTGGGACTGTGCAGTGTG | |
C4orf74-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf74-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
CCL22-F | ACAGACTGCACTCCTGGTTG | |
CCL22-R | GACGTAATCACGGCAGCAGA |
Table 3 Primer sequences used for validation of functional sites
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
合成R-loop功能位点sgRNA序列 Synthesize sgRNA sequences targeting R-loop functional sites | ZBTB20 | AGGAGCAAAATGAAGCAGAA |
TUBAL3 | TGGTCTCAGAGTAGCTGTGT | |
TMEM176A | CCCAGTGACCCTCGCGCAGC | |
TAF6 | AGGGAGGTTCTGGTGGAGCT | |
SPON2 | CTGCGTGGGGTGGTGATGAA | |
SOX14 | TCTGCTGCTGATTGGCGCCC | |
ACTRT1 | ATTGGCTCAGAGGCCCCACC | |
CARHSP1 | GAACGCAGAGCGCGGGACGT | |
CAMKK2 | AGCCGGCGGGGGCGCGCAGG | |
C4orf33 | GAATCACCCTTCCTTCTTCT | |
ZYG11A | AACAGAGAGGACCGTTAGAG | |
ZFY | AGTTCGGAGCTGACAAAAAG | |
CCDC71 | GTTCTTCAGACTTCTGCACA | |
CCDC30 | TTTGAGACTTTGCTGTTGTT | |
ZNF84 | GTGCAGTCCCCGACTCGTCC | |
TPP2 | GAGGAGTCTGAGGACATTAC | |
TXNRD1 | TAGCCCGTGTATCTTCTTCA | |
C9orf169 | CTCAGGTGATCCGCCTGCCT | |
CCM2 | GGGAAGTAGGGAAAATGAGC | |
C2orf74 | CTAATTTCTCTCCATAACTG | |
CCL22 | GTGGAGAAATTCTCTTTGGC | |
CA10 | TGAGGCTGAGCGCGGCCATG | |
CASP7 | GTGCGTATGCTGTGGGGTTG | |
CASC5 | ATTGTGGGGGAGGTCTCCAC | |
qPCR验证 qPCR validation | ZBTB20-F- | GCGTGGACAGGATCTACTCG |
ZBTB20-R- | ATCGTCCTCCATCTCCTGCT | |
SPON2-F | GCCAGAGCCCTGGCCAAATACAGCATC | |
SPON2-R | TCCTCCACATGCTGTAGTCGGAGCTATG | |
TPP2-F | TTCACACCCAGGCTCAAGAC | |
TPP2-R | TGCAAATTTAAGGCCTCTCCC | |
ZNF84-F | ATCTCCTACCCACGGCTCTT | |
ZNF84-R | AAGGAGAAGAGCCGTGGGTA | |
C4orf33-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf33-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
ACTRT1-F | TGTCATCAGCTCCGTCTTGG | |
ACTRT1-R | TACCAGTCCACGCTCAATGG | |
ZYF-F | TGTTCCTGATGACCCAGACTC | |
ZYF-R | ATCTGGGACTGTGCAGTGTG | |
C4orf74-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf74-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
CCL22-F | ACAGACTGCACTCCTGGTTG | |
CCL22-R | GACGTAATCACGGCAGCAGA |
Fig. 2 Establishment and identification of R-loop targeted editing technology in mammalian cells A: Schematics of two linearized lentiviral vector constructs; B: verification of dCas9 gene expression; C: confirmation of dCas9 protein and dCas9-RNaseH1 protein expression; D: validation of R-loop editing efficiency in the dCas9-RNaseH1-1 monoclonal cell line, *** P﹤0.001;**** P﹤0.000 1
Fig. 4 Screening R-loop sites associated with drug resistance in HeLa cells A: Scatter plots showing changes in gene expression of sgRNA library in dCas9-RNaseH1 SAM cell lines before and after treatment with cisplatin and paclitaxel. B: Venn diagrams illustrating the impact of different drug treatments on gene expression of the sgRNA library. C: GO and KEGG enrichment analysis plots of R-loop functional sites in cisplatin-resistant and cisplatin-sensitive groups. D: GO and KEGG enrichment analysis plots of R-loop functional sites in paclitaxel-resistant and paclitaxel-sensitive groups
Fig. 5 Validation of candidate genes A: Cellular state diagram of dCas9-RNaseH1 cells transfected with different sgRNAs after treatment with different anti-tumor drugs. B: Cell count statistics of dCas9-RNaseH1 cell lines transfected with different sgRNAs after treatment with different anti-tumor drugs. C: Validation of R-loop editing efficiency in dCas9-RNaseH1 cell lines transfected with different sgRNAs. D: Validation of transcriptional expression differences in dCas9-RNaseH1 cell lines transfected with different sgRNAs. *P< 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.000 1
[1] |
Hegazy YA, Fernando CM, Tran EJ. The balancing act of R-loop biology: the good, the bad, and the ugly[J]. J Biol Chem, 2020, 295(4): 905-913.
doi: 10.1074/jbc.REV119.011353 pmid: 31843970 |
[2] |
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: the complex balancing act of R-loops in genome stability[J]. Mol Cell, 2022, 82(12): 2267-2297.
doi: 10.1016/j.molcel.2022.04.014 pmid: 35508167 |
[3] | Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability[J]. Nat Rev Mol Cell Biol, 2020, 21(3): 167-178. |
[4] | Li F, Zafar A, Luo L, et al. R-loops in genome instability and cancer[J]. Cancers, 2023, 15(20): 4986. |
[5] | Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective[J]. Drug Resist Updat, 2021, 59: 100796. |
[6] | Nie YL, Yao GY, Wei YJ, et al. Single-cell transcriptome sequencing analysis reveals intra-tumor heterogeneity in esophageal squamous cell carcinoma[J]. Environ Toxicol, 2024,(4). |
[7] | Ding S, Liu JF, Han X, et al. CRISPR/Cas9-mediated genome editing in cancer therapy[J]. Int J Mol Sci, 2023, 24(22): 16325. |
[8] | Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens[J]. Nature, 2019, 568(7753): 511-516. |
[9] | Xu CL, Li CY, Chen JW, et al. R-loop-dependent promoter-proximal termination ensures genome stability[J]. Nature, 2023, 621(7979): 610-619. |
[10] | Liu KP, Sun QW. Intragenic tRNA-promoted R-loops orchestrate transcription interference for plant oxidative stress responses[J]. Plant Cell, 2021, 33(11): 3574-3591. |
[11] |
Xu W, Li K, Li Q, et al. Quantitative, convenient, and efficient genome-wide R-loop profiling by ssDRIP-seq in multiple organisms[J]. Methods Mol Biol, 2022, 2528: 445-464.
doi: 10.1007/978-1-0716-2477-7_29 pmid: 35704209 |
[12] | Xu W, Xu H, Li K, et al. The R-loop is a common chromatin feature of the Arabidopsis genome[J]. Nat Plants, 2017, 3(9): 704-714. |
[13] | Xu W, Liu X, Li JJ, et al. ULI-ssDRIP-seq revealed R-loop dynamics during vertebrate early embryogenesis[J]. Cell Insight, 2024, 3(4): 100179. |
[14] | Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588. |
[15] | Stoyanov D, Stoyanov GS, Ivanov MN, et al. Transcription factor Zbtb20 as a regulator of malignancy and its practical applications[J]. Int J Mol Sci, 2023, 24(18): 13763. |
[16] |
Sun YB, Preiss NK, Valenteros KB, et al. Zbtb20 restrains CD8 T cell immunometabolism and restricts memory differentiation and antitumor immunity[J]. J Immunol, 2020, 205(10): 2649-2666.
doi: 10.4049/jimmunol.2000459 pmid: 32998985 |
[17] |
Wang Y, Zhang Y, Herman JG, et al. Epigenetic silencing of TMEM176A promotes esophageal squamous cell cancer development[J]. Oncotarget, 2017, 8(41): 70035-70048.
doi: 10.18632/oncotarget.19550 pmid: 29050260 |
[18] | Li HX, Yang WL, Zhang MY, et al. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer[J]. Epigenomics, 2021, 13(17): 1403-1419. |
[19] |
Guo YL, Cao F, Hu S, et al. TMEM176A acts as a tumor suppressor gene in pancreatic cancer by inhibiting ERK signaling[J]. Discov Med, 2020, 30(161): 145-153.
pmid: 33593482 |
[20] | Liu Z, Yan WW, Liu SH, et al. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis[J]. Cancer Lett, 2023, 565: 216225. |
[21] | Huang WY, Liao ZB, Zhang JC, et al. USF2-mediated upregulation of TXNRD1 contributes to hepatocellular carcinoma progression by activating Akt/mTOR signaling[J]. Cell Death Dis, 2022, 13(11): 917. |
[22] |
Zhao J, He CT, Fan XY, et al. Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1[J]. Theranostics, 2024, 14(4): 1390-1429.
doi: 10.7150/thno.92571 pmid: 38389851 |
[23] |
Lei XY, Lin H, Wang JQ, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression[J]. Nat Commun, 2022, 13(1): 3882.
doi: 10.1038/s41467-022-31417-x pmid: 35794100 |
[24] | Shao CW, Hedberg C, Qian Y. In vivo imaging of the macrophage migration inhibitory factor in liver cancer with an activity-based probe[J]. Anal Chem, 2021, 93(4): 2152-2159. |
[25] | Zhang XZ, Wei LL, Zhang XH, et al. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice[J]. Development, 2022, 149(12): dev200489. |
[26] | Park HS, Papanastasi E, Blanchard G, et al. ARP-T1-associated Bazex-Dupré-Christol syndrome is an inherited basal cell cancer with ciliary defects characteristic of ciliopathies[J]. Commun Biol, 2021, 4(1): 544. |
[27] |
Husni RE, Shiba-Ishii A, Nakagawa T, et al. DNA hypomethylation-related overexpression of SFN, GORASP2 and ZYG11A is a novel prognostic biomarker for early stage lung adenocarcinoma[J]. Oncotarget, 2019, 10(17): 1625-1636.
doi: 10.18632/oncotarget.26676 pmid: 30899432 |
[28] |
Wang X, Sun Q, Chen C, et al. ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression[J]. Oncotarget, 2016, 7(7): 8029-8042.
doi: 10.18632/oncotarget.6904 pmid: 26771237 |
[29] | Ren AA, Snellings DA, Su YS, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism[J]. Nature, 2021, 594(7862): 271-276. |
[30] |
Kar S, Samii A, Bertalanffy H. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations[J]. Neurosurg Rev, 2015, 38(2): 229-237.
doi: 10.1007/s10143-014-0597-8 pmid: 25403688 |
[31] |
Röhrle N, Knott MML, Anz D. CCL22 signaling in the tumor environment[J]. Adv Exp Med Biol, 2020, 1231: 79-96.
doi: 10.1007/978-3-030-36667-4_8 pmid: 32060848 |
[32] |
Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis[J]. Nat Rev Cancer, 2006, 6(10): 776-788.
pmid: 16990855 |
[33] |
Vervoort SJ, Welsh SA, Devlin JR, et al. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer[J]. Cell, 2021, 184(12): 3143-3162.e32.
doi: 10.1016/j.cell.2021.04.022 pmid: 34004147 |
[34] | Transcriptome Core Group PCAWG, Calabrese C, Davidson NR, et al. Genomic basis for RNA alterations in cancer[J]. Nature, 2020, 578(7793): 129-136. |
[1] | ZHU Tian-yi, KONG Gui-mei, JIAO Hong-mei, GUO Ting-ting, WU Ri-han, LIU Cui-cui, GAO Cheng-feng, LI Guo-cai. Establishment of A Bacterial Model of CRISPR/Cas9 Mediated adeG Gene Knockout in Escherichia coli [J]. Biotechnology Bulletin, 2024, 40(2): 55-64. |
[2] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[3] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[4] | LIU Jin-sheng, CHEN Zhen-ya, HUO Yi-xin, GUO Shu-yuan. Application of FACS Technology in the Directed Evolution of Enzyme [J]. Biotechnology Bulletin, 2023, 39(10): 93-106. |
[5] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[6] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[7] | CHEN Fu-nuan, HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei. Structure of ABC Transporter and Research Progress of It in Bacterial Pathogenicity [J]. Biotechnology Bulletin, 2022, 38(6): 43-52. |
[8] | ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects [J]. Biotechnology Bulletin, 2022, 38(6): 66-73. |
[9] | ZHANG Xue, TAN Yu-meng, JIANG Hai-xia, YANG Guang-yu. Directed Evolution of α-1,2-fucosyltransferase by a Single-cell Ultra-high-throughput Screening Method [J]. Biotechnology Bulletin, 2022, 38(1): 289-298. |
[10] | TIAN Lu, WU Mi, GOU Jing-xuan, GONG Guo-li. Research and Application Progress of Bacteriocin [J]. Biotechnology Bulletin, 2021, 37(4): 224-233. |
[11] | LI Di-yin, HE Yong-xing, HAN Jian-ting, LI Kun, WANG Zhi-ping, LI Miao-hui. Functional Identification of RstA in Pseudomonas fluorescens Strain 2P24 [J]. Biotechnology Bulletin, 2019, 35(6): 107-113. |
[12] | DOU Peng-peng, WANG Li, ZHANG Hua, ZHENG Yao. Molecular Identification and Drug Resistance Analysis of Plesiomonas shigellode Isolated from Fish [J]. Biotechnology Bulletin, 2019, 35(11): 118-123. |
[13] | ZHAO Yan-kun, LIU Hui-min, WANG Shuai, CAI Jian-xing, WANG Cheng, CHEN He. Research Progress on Drug Resistance of Staphylococcus aureus in Bovine Mastitis [J]. Biotechnology Bulletin, 2018, 34(10): 18-25. |
[14] | MA Fu-qiang, YANG Guang-yu. Ultra-high-throughput Screening System Based on Droplet Microfluidics and Its Applications in Synthetic Biology [J]. Biotechnology Bulletin, 2017, 33(1): 83-92. |
[15] | ZHANG Jing1, 2, SUN Rui-qiu2, TANG Yan-ting2, LIU Xiang2. Establishment and Application of a High-throughput Drug Screening Assay Targeting Macrophage Migration Inhibitory Factor [J]. Biotechnology Bulletin, 2016, 32(9): 253-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||