Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (12): 136-144.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0488
Previous Articles Next Articles
WU Shuang1,2(
), LU Rui-lin2, FENG Cheng-tian2, YUAN Kun2, WANG Zhen-hui2, LIU Jin-ping1, LIU Hui2(
)
Received:2024-05-23
Online:2024-12-26
Published:2025-01-15
Contact:
LIU Hui
E-mail:605202618@qq.com;liuhui@catas.cn
WU Shuang, LU Rui-lin, FENG Cheng-tian, YUAN Kun, WANG Zhen-hui, LIU Jin-ping, LIU Hui. Expression of HbTRXh5 Gene of Hevea brasiliensis in Yeast and Analysis on Its Resistance to Stress[J]. Biotechnology Bulletin, 2024, 40(12): 136-144.
Fig. 1 Nucleotide sequence of HbTRXh5 gene coding region and its encoded amino acid sequence The blue background indicates the thioredoxin(TRX)domain, and the underlined one shows the highly conserved CGPC active site
Fig. 3 Expression of HbTRXh5 gene in various tissues of rubber tree(Hevea brasiliensis) Different lowercase letters indicate a significant difference(P<0.05). The same below
Fig. 5 Molecular detection of yeast transformed with pYES2 or pYES2-HbTRXh5 A: PCR detection of yeast transformed with pYES2 or pYES2-HbTRXh5. B: Semi-quantitative RT-PCR detection of HbTRXh5 gene expression in transformed yeast.M: DL2000 DNA marker(TaKaRa); N1 and N2: negative control without template; P1: pYES2 plasmid positive control; P2: pYES2-HbTRXh5 plasmid positive control; 1-3 and 7-9: pYES2 transformed yeast monoclonal; 4-6 and 10-12: pYES2-HbTRXh5 transformed yeast monoclonal
Fig. 6 Survival differences between HbTRXh5 transgenic yeast and control yeast transformed with pYES2 empty vector after abiotic stress treatment A: H2O2-induced oxidative stress treatment(1 d). B: Low temperature stress(-20℃)treatment. C: Salt stress(2.5 mol/L NaCl)treatment
| [1] | Sevilla F, Martí MC, De Brasi-Velasco S, et al. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription[J]. J Exp Bot, 2023, 74(19): 5955-5969. |
| [2] |
Geigenberger P, Thormählen I, Daloso DM, et al. The unprecedented versatility of the plant thioredoxin system[J]. Trends Plant Sci, 2017, 22(3): 249-262.
doi: S1360-1385(16)30221-7 pmid: 28139457 |
| [3] | Jiménez A, López-Martínez R, Martí MC, et al. The integration of TRX/GRX systems and phytohormonal signalling pathways in plant stress and development[J]. Plant Physiol Biochem, 2024, 207: 108298. |
| [4] |
Delorme-Hinoux V, Bangash SAK, Meyer AJ, et al. Nuclear thiol redox systems in plants[J]. Plant Sci, 2016, 243: 84-95.
doi: 10.1016/j.plantsci.2015.12.002 pmid: 26795153 |
| [5] | Meyer Y, Belin C, Delorme-Hinoux V, et al. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance[J]. Antioxid Redox Signal, 2012, 17(8): 1124-1160. |
| [6] | Gelhaye E, Rouhier N, Jacquot JP. The thioredoxin h system of higher plants[J]. Plant Physiol Biochem, 2004, 42(4): 265-271. |
| [7] | Zuo XR, Yang C, Yan YN, et al. Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns[J]. Plant Signal Behav, 2023, 18(1): 2294426. |
| [8] | Chibani K, Wingsle G, Jacquot JP, et al. Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa[J]. Mol Plant, 2009, 2(2): 308-322. |
| [9] | Boubakri H, Chihaoui SA, Najjar E, et al. Genome-wide analysis and expression profiling of H-type Trx family in Phaseolus vulgaris revealed distinctive isoforms associated with symbiotic N2-fixing performance and abiotic stress response[J]. J Plant Physiol, 2021, 260: 153410. |
| [10] | Ji MG, Park HJ, Cha JY, et al. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance[J]. Plant Physiol Biochem, 2020, 147: 313-321. |
| [11] | Park JH, Lee ES, Chae HB, et al. Disulfide reductase activity of thioredoxin-h2 imparts cold tolerance in Arabidopsis[J]. Biochem Biophys Res Commun, 2021, 568: 124-130. |
| [12] |
闫宝琴, 陈燕桂, 史贤成, 等. 拟南芥AtTrx5增强植物菌核病的抗性研究[J]. 中国油料作物学报, 2023, 45(6): 1109-1118.
doi: 10.19802/j.issn.1007-9084.2023028 |
| Yan BQ, Chen YG, Shi XC, et al. Arabidopsis thioredoxin gene(AtTrx5)enhances plant resistance to Sclerotinia[J]. Chin J Oil Crop Sci, 2023, 45(6): 1109-1118. | |
| [13] |
Tian YC, Fan M, Qin ZX, et al. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor[J]. Nat Commun, 2018, 9: 1063.
doi: 10.1038/s41467-018-03463-x pmid: 29540799 |
| [14] | Zhai JL, Qi Q, Wang MQ, et al. Overexpression of tomato thioredoxin h(SlTrxh)enhances excess nitrate stress tolerance in transgenic tobacco interacting with SlPrx protein[J]. Plant Sci, 2022, 315: 111137. |
| [15] | 莫业勇, 杨琳. 2022年国内外天然橡胶产业发展情况和2023年形势分析[J]. 中国热带农业, 2023(4): 19-25, 70. |
| Mo YY, Yang L. Analysis of the development of domestic and foreign natural rubber industry in 2022 and the situation in 2023[J]. China Trop Agric, 2023(4): 19-25, 70. | |
| [16] | 刘琰琰, 韩冬, 杨菲, 等. 气象灾害对橡胶树的影响及风险评估综述[J]. 福建林业科技, 2016, 43(3): 244-252. |
| Liu YY, Han D, Yang F, et al. Studies for impact of meteorological disasters on Hevea brasiliensis and risk assessment[J]. J Fujian For Sci Technol, 2016, 43(3): 244-252. | |
| [17] |
王帅, 袁坤, 何其光, 等. 橡胶树硫氧还蛋白基因HbCXXS1的克隆及表达分析[J]. 生物技术通报, 2022, 38(12): 214-222.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0290 |
| Wang S, Yuan K, He QG, et al. Cloning and expression analysis of HbCXXS1, a thioredoxin gene in Hevea brasiliensis[J]. Biotechnol Bull, 2022, 38(12): 214-222. | |
| [18] |
李双江, 冯成天, 胡义钰, 等. 橡胶树HbDHAR2基因克隆及表达分析[J]. 华北农学报, 2021, 36(3): 25-32.
doi: 10.7668/hbnxb.20191875 |
| Li SJ, Feng CT, Hu YY, et al. Cloning and expression analysis of HbDHAR2 gene from Hevea brasiliensis[J]. Acta Agric Boreali Sin, 2021, 36(3): 25-32. | |
| [19] |
Li HP, Qin YX, Xiao XH, et al. Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3[J]. Plant Sci, 2011, 181(2): 132-139.
doi: 10.1016/j.plantsci.2011.04.014 pmid: 21683878 |
| [20] |
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method[J]. Nat Protoc, 2008, 3: 1101-1108.
doi: 10.1038/nprot.2008.73 pmid: 18546601 |
| [21] | Nuruzzaman M, Sharoni AM, Satoh K, et al. The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments[J]. Biochem Biophys Res Commun, 2012, 423(2): 417-423. |
| [22] | Zhou JF, Song TQ, Zhou HW, et al. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat(Triticum aestivum L.)[J]. Front Plant Sci, 2022, 13: 1020584. |
| [23] | Zhang JR, Zhao T, Yan FD, et al. Genome-wide identification and expression analysis of thioredoxin(Trx)genes in seed development of Vitis vinifera[J]. J Plant Growth Regul, 2022, 41(7): 3030-3045. |
| [24] |
Zhang Y, Leclercq J, Montoro P. Reactive oxygen species in Hevea brasiliensis latex and relevance to tapping panel dryness[J]. Tree Physiol, 2017, 37(2): 261-269.
doi: 10.1093/treephys/tpw106 pmid: 27903918 |
| [25] | 李梦园, 樊亚栋, 张新宁, 等. 小麦TaTrxh9基因的序列特征及其对渗透胁迫的响应[J]. 西北植物学报, 2019, 39(5): 896-903. |
| Li MY, Fan YD, Zhang XN, et al. Sequence characteristics of TaTrxh9 gene and its response to osmotic stresses in wheat[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(5): 896-903. | |
| [26] | Xiang J, Li M, Li YY, et al. Overexpression of grapevine VyTRXy improves drought tolerance by maintaining photosynthesis and enhancing the antioxidant and osmolyte capacity of plants[J]. Int J Mol Sci, 2023, 24(22): 16388. |
| [27] |
刘辉, 邓治, 杨洪, 等. 橡胶树HbMC2在酵母中的表达和抗逆性分析[J]. 生物技术通报, 2018, 34(9): 202-208.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0298 |
| Liu H, Deng Z, Yang H, et al. Expression and stress tolerance analysis of HbMC2 gene from Hevea brasliensis in yeast[J]. Biotechnol Bull, 2018, 34(9): 202-208. | |
| [28] |
李博静, 郑腊梅, 吴乌云, 等. 西蒙得木HSP20基因家族的进化、表达和功能分析[J]. 生物技术通报, 2024, 40(6): 190-202.
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0012 |
| Li BJ, Zheng LM, Wu WY, et al. expression, and functional analysis of the HSP20 gene family from Simmondisa chinensis[J]. Biotechnol Bull, 2024, 40(6):190-202. | |
| [29] |
胡尚钦, 汪军成, 姚立蓉, 等. 盐生草根系基因HgAKR6C的克隆与初步功能分析[J]. 草业学报, 2024, 33(1): 61-74.
doi: 10.11686/cyxb2023076 |
| Hu SQ, Wang JC, Yao LR, et al. Cloning and preliminary functional analysis of the root gene HgAKR6C of Halogeton glomeratus[J]. Acta Prataculturae Sin, 2024, 33(1): 61-74. | |
| [30] | Zhang CJ, Zhao BC, Ge WN, et al. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice[J]. Plant Physiol, 2011, 157(4): 1884-1899. |
| [31] | Luan JY, Dong JX, Song X, et al. Overexpression of Tamarix hispida ThTrx5 confers salt tolerance to Arabidopsis by activating stress response signals[J]. Int J Mol Sci, 2020, 21(3): 1165. |
| [1] | YIN Yuan, CHENG Shuang, LIU Ding-hao, DENG Xiao-xia, LI Kai-yue, WANG Jing-hong, LIN Ji-xiang. Research Progress in Exogenous Hydrogen Peroxide(H2O2)Affecting Plant Growth and Physiological Metabolism under Abiotic Stress [J]. Biotechnology Bulletin, 2025, 41(1): 1-13. |
| [2] | WU Zhi-jian, LIU Guang-yang, LIN Zhi-hao, SHENG Bin, CHEN Ge, XU Xiao-min, WANG Jun-wei, XU Dong-hui. Research Progress of Nano-regulation of Vegetable Seed Germination and Its Mechanism [J]. Biotechnology Bulletin, 2025, 41(1): 14-24. |
| [3] | LI Yu-xin, LI Miao, DU Xiao-fen, HAN Kang-ni, LIAN Shi-chao, WANG Jun. Identification and Expression Analysis of SiSAP Gene Family in Foxtail Millet(Setaria italica) [J]. Biotechnology Bulletin, 2025, 41(1): 143-156. |
| [4] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
| [5] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
| [6] | LI Yong-hui, BAO Xing-xing, DUAN Yi-ke, ZHAO Yun-xia, YU Xiang-li, CHEN Yao, ZHANG Yan-zhao. Genome-wide Identification and Expression Features Analysis of the bZIP Family in Rhododendron henanense subsp. lingbaoense [J]. Biotechnology Bulletin, 2024, 40(8): 186-198. |
| [7] | CUI Yuan-yuan, WANG Zhao-yi, BAI Shuang-yu, REN Yu-zhao, DOU Fei-fei, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Genome-wide Identification of Non-specific Phospholipase C Gene Family in Hordeum vulgare L. and Stress Expression Analysis at Seedling Stage [J]. Biotechnology Bulletin, 2024, 40(8): 74-82. |
| [8] | LIU Dan-dan, WANG Lei-gang, SUN Ming-hui, JIAO Xiao-yu, WU Qiong, WANG Wen-jie. Genome-wide Identification and Expression Pattern Profiling of the Trehalose-6-phosphate Synthase(TPS)Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2024, 40(8): 152-163. |
| [9] | YU Niu, LIU Fan, YANG Jin-chang. Cloning of SgTPS7 in Sindora glabra and Its Function in Terpene Synthesis and Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(8): 164-173. |
| [10] | WU Ding-jie, CHEN Ying-ying, XU Jing, LIU Yuan, ZHANG Hang, LI Rui-li. Research Progress in Plant Gibberellin Oxidase and Its Functions [J]. Biotechnology Bulletin, 2024, 40(7): 43-54. |
| [11] | HU Ya-dan, WU Guo-qiang, LIU Chen, WEI Ming. Roles of MYB Transcription Factor in Regulating the Responses of Plants to Stress [J]. Biotechnology Bulletin, 2024, 40(6): 5-22. |
| [12] | DU Bing-shuai, ZOU Xin-hui, WANG Zi-hao, ZHANG Xin-yuan, CAO Yi-bo, ZHANG Ling-yun. Genome-wide Identification and Expression Analysis of the SWEET Gene Family in Camellia oleifera [J]. Biotechnology Bulletin, 2024, 40(5): 179-190. |
| [13] | GUO Hui-yan, DONG Xue, AN Meng-nan, XIA Zi-hao, WU Yuan-hua. Research Progress in the Functions of Key Enzymes of Ubiquitination Modification in Plant Stress Responses [J]. Biotechnology Bulletin, 2024, 40(4): 1-11. |
| [14] | JIANG Lin-qi, ZHAO Jia-ying, ZHENG Fei-xiong, YAO Xin-yi, LI Xiao-xian, YU Zhen-ming. Identification and Expression Analysis of 14-3-3 Gene Family in Dendrobium officinale [J]. Biotechnology Bulletin, 2024, 40(3): 229-241. |
| [15] | ZHOU Hong-dan, LUO Xiao-ping, TU Mi-xue, LI Zhong-guang. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 41-51. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||