Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (12): 124-135.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0385
Previous Articles Next Articles
HUA Xuan(
), TIAN Bo-wen, ZHOU Xin-tong, JIANG Zi-han, WANG Shi-qi, HUANG Qian-hui, ZHANG Jian(
), CHEN Yan-hong(
)
Received:2024-04-23
Online:2024-12-26
Published:2025-01-15
Contact:
ZHANG Jian, CHEN Yan-hong
E-mail:610757303@qq.com;yjnkyy@ntu.edu.cn;chenyh@ntu.edu.cn
HUA Xuan, TIAN Bo-wen, ZHOU Xin-tong, JIANG Zi-han, WANG Shi-qi, HUANG Qian-hui, ZHANG Jian, CHEN Yan-hong. Cloning SmERF B3-45 from Salix matsudana and Functional Analysis on Its Tolerance to Salt[J]. Biotechnology Bulletin, 2024, 40(12): 124-135.
Fig. 1 AP2/ERF family classification The red star indicates that members of the Soloist subfamily contain AP2 domains with a lower degree of conservatism
| 引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
|---|---|
| SmERF B3-45F | ATGTCGCAAGGAGGGAACA |
| SmERF B3-45R | TCATTTTCTTCTCTTGGGC |
| pWM101-SmERF B3-45F | TCGAGCTTTCGCGAGCTCGGTACCATGTCGCAAGGAGGGAACA |
| pWM101-SmERF B3-45R | GCATGCCTGCAGGTCGACTCTAGATCATTTTCTTCTCTTGGGC |
| P2300-SmERF B3-45F | GACGAGCTGTACAAGGGATCCATGTCGCAAGGAGGGAACA |
| P2300-SmERF B3-45R | CTGCAGGTCGACTCTAGATCATCATTTTCTTCTCTTGGGC |
| qPCR-SmERF B3-45F | AGCAAGGATGTGGCTTGGAA |
| qPCR- SmERF B3-45R | CTTCTCTTGGGCGAGCCATC |
| TRV2- SmERF B3-45F | TAAGGTTACCGAATTCTCGCAAGGAGGGAACAACAG |
| TRV2- SmERF B3-45R | CGAGACGCGTGAGCTCTCTTACACGCCACTTCCACC |
Table 1 Information of primers used in this study
| 引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
|---|---|
| SmERF B3-45F | ATGTCGCAAGGAGGGAACA |
| SmERF B3-45R | TCATTTTCTTCTCTTGGGC |
| pWM101-SmERF B3-45F | TCGAGCTTTCGCGAGCTCGGTACCATGTCGCAAGGAGGGAACA |
| pWM101-SmERF B3-45R | GCATGCCTGCAGGTCGACTCTAGATCATTTTCTTCTCTTGGGC |
| P2300-SmERF B3-45F | GACGAGCTGTACAAGGGATCCATGTCGCAAGGAGGGAACA |
| P2300-SmERF B3-45R | CTGCAGGTCGACTCTAGATCATCATTTTCTTCTCTTGGGC |
| qPCR-SmERF B3-45F | AGCAAGGATGTGGCTTGGAA |
| qPCR- SmERF B3-45R | CTTCTCTTGGGCGAGCCATC |
| TRV2- SmERF B3-45F | TAAGGTTACCGAATTCTCGCAAGGAGGGAACAACAG |
| TRV2- SmERF B3-45R | CGAGACGCGTGAGCTCTCTTACACGCCACTTCCACC |
| 种类Type | 功能 Function | 元件 Element | 数目 Amount |
|---|---|---|---|
| 光响应元件Light responsive elements | 光响应Light responsiveness | G-box | 5 |
| TCT-motif | 2 | ||
| Box 4 | 4 | ||
| ATCT-motif | 1 | ||
| AT1-motif | 1 | ||
| I-box | 1 | ||
| 激素响应元件Phytohormone responsive elements | 脱落酸响应Abscisic acid responsiveness | ABRE | 6 |
| 赤霉素响应Gibberellin-responsiveness | TATC-box | 1 | |
| 逆境响应元件Stress responsive elements | 抗氧Antioxidant | O2-site | 1 |
| 干旱、盐和低温响应 Drought, salt and low temperature responsive | MYB | 1 |
Table 2 Predicted results of cis-acting elements in the SmERF B3-45 promoter region
| 种类Type | 功能 Function | 元件 Element | 数目 Amount |
|---|---|---|---|
| 光响应元件Light responsive elements | 光响应Light responsiveness | G-box | 5 |
| TCT-motif | 2 | ||
| Box 4 | 4 | ||
| ATCT-motif | 1 | ||
| AT1-motif | 1 | ||
| I-box | 1 | ||
| 激素响应元件Phytohormone responsive elements | 脱落酸响应Abscisic acid responsiveness | ABRE | 6 |
| 赤霉素响应Gibberellin-responsiveness | TATC-box | 1 | |
| 逆境响应元件Stress responsive elements | 抗氧Antioxidant | O2-site | 1 |
| 干旱、盐和低温响应 Drought, salt and low temperature responsive | MYB | 1 |
Fig. 3 Cloning of SmERF B3-45 and construction of plant expression vector construction A: PCR amplification product detection of SmERF B3-45. B: Overexpression vector pWM101-SmERF B3-45 single enzyme digestion(BamH I)verification. C: VIGS vector pYL1561-SmERF B3-45 double enzyme digestion(EcoR I+Sal I)verification. D: Subcellular localization vector p2300-SmERF B3-45 double enzyme digestion(Kpn I+Sal I)verification
Fig. 4 Phylogenetic tree construction and protein alignment on SmERF B3-45 protein and its homologs A: Phylogenetic tree. B: Homologous protein alignment. Sabra14G0034100: S. alba; Potri.014G047000, Potri.003G150700, Potri.003G150800: Populus alba; Gohir.D08G067700: G. herbaceum; BraA04t18813Z, BraA05t19475Z: B. rapa; Manes.05G054400: M. esculenta; AT2G44840_ERF13, AT2G31230_ERF15, AT4G17490_ERF6: Arabidopsis thaliana. The SmERF B3-45 protein shares an AP2 domain with its orthologous proteins, which has been marked with a red line
Fig. 5 Expression pattern analysis of SmERF B3-45 A: Expressions of SmERF B3-45 in different tissues of Salix matsudana. B: Expressions of SmERF B3-45 after treatment with 200 mmol/L NaCl for 0, 4, 8 and 12 h. Different small letters indicate significant differences(P<0.05). The same below
Fig. 6 Subcellular localization analysis of SmERF B3-45 protein A: Laser confocal microscopy to display the stomatal structure of leaf cells.B: GFP signal channel displays the localization signal of SmERF B3-45 protein. C: mCherry signal channel displays histone H2B nuclear localization signals.D: Overlay of channels of A, B, and C, display co-localization of SmERF B3-45 protein localization signal and histone H2B nuclear localization signal
Fig. 7 Phenotypic analysis of SmERF B3-45 overexpressing transgenic Arabidopsis thaliana lines A: Growth conditions of various lines after treatment with 0 and 100 mmol/L NaCl for 7 d. B: Statistical analysis of root length of various lines after treatment with 0 and 100 mmol/L NaCl for 7 d
Fig. 9 Silencing SmERF B3-45 through VIGS compromised the tolerance in willow to salt A: Expression of SmERF B3-45 in transgenic plants. B: Growth condition of plants after treatment with 100 mmol/L NaCl, where the red arrows indicate severe wilting, withering, and leaf drop phenomena. C: Total protein content. D: MDA content. E: Proline content. pTRV2: Negative control plants. pTRV2-SmERF B3-45-1, pTRV2-SmERF B3-45-2, pTRV2-SmERF B3-45-3: Gene-silenced plants
| [1] | Ahmad Bhat M, Mishra AK, Jan S, et al. Plant growth promoting rhizobacteria in plant health: A perspective study of the underground interaction[J]. Plants, 2023, 12(3): 629. |
| [2] | Arshad Ullah M. Niazboo(Ocimum basilicum)as medicinal plant establishes against salinity and sodicity[J]. Adv Biotechnol Microbiol, 2019, 12(5): 555846. |
| [3] | 李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158. |
| Li B, Wang ZC, Sun ZG, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agric Res Arid Areas, 2005, 23(2): 154-158. | |
| [4] | Wang GZ, Ni G, Li, et al. JFSaline-alkali soil reclamation and utilization in China:progress and prospects[J]. Frontiers of Agricultural Science and Engineering, 2024, 11(2): 216-28. |
| [5] | 盐碱地渔业开发技术与服务共享平台, https://www.ecsf.ac.cn/info/1133/3547.htm[2017-11-16]. |
| Technology and Service Sharing Platform for Saline Fisheries Development, https://www.ecsf.ac.cn/info/1133/3547.htm[2017-11-16]. | |
| [6] |
王才林, 张亚东, 赵凌, 等. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米, 2019, 25(1): 1-6.
doi: 10.3969/j.issn.1006-8082.2019.01.001 |
|
Wang CL, Zhang YD, Zhao L, et al. Research status, problems and suggestions on salt-alkali tolerant rice[J]. China Rice, 2019, 25(1): 1-6.
doi: 10.3969/j.issn.1006-8082.2019.01.001 |
|
| [7] | Wang HL, Li C, Wang LD, et al. GmABR1 encoding an ERF transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana[J]. Front Plant Sci, 2023, 14: 1125245. |
| [8] | Zhang J, Shi SZ, Jiang YN, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9: e11076. |
| [9] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
| [10] | Ma ZM, Jin YM, Wu T, et al. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice[J]. Front Plant Sci, 2022, 13: 1007811. |
| [11] | Pagliarini RF, Marinho JP, Molinari MDC, et al. Overexpression of full-length and partial DREB2A enhances soybean drought tolerance[J]. Agron Sci Biotechnol, 2021, 8: 1-21. |
| [12] | Shi HZ, Quintero FJ, Pardo JM, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants[J]. Plant Cell, 2002, 14(2): 465-477. |
| [13] |
Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. Plant J, 2002, 29(1): 23-32.
doi: 10.1046/j.1365-313x.2002.01191.x pmid: 12060224 |
| [14] | Lv Kw, Li J, Zhao K, et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species[J]. Plant Sci, 2020, 292: 110375. |
| [15] |
Wu Lj, Chen Xl, Ren Hy, et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226(4): 815-825.
doi: 10.1007/s00425-007-0528-9 pmid: 17479283 |
| [16] |
Huang Q, Sun MH, Yuan TP, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Food Chem, 2019, 274: 368-375.
doi: S0308-8146(18)31531-0 pmid: 30372953 |
| [17] | Qu YJ, Nong QD, Jian SG, et al. An AP2/ERF gene, HuERF1, from pitaya(Hylocereus undatus)positively regulates salt tolerance[J]. Int J Mol Sci, 2020, 21(13): 4586. |
| [18] | Fu JY, Zhu CY, Wang C, et al. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2021, 159: 257-267. |
| [19] | Cao BB, Shu LX, Li A. Functional characterization of LkERF-B2 for improved salt tolerance ability in Arabidopsis thaliana[J]. Biotech, 2019, 9(7): 263. |
| [20] | Yang H, Yu C, Yan J, et al. Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-type transcription factor increases tolerance to salt in transgenic tobacco[J]. Biochemistry, 2014, 79(11): 1226-1236. |
| [21] | Zhao MJ, Yin LJ, Liu Y, et al. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean[J]. BMC Plant Biol, 2019, 19(1): 506. |
| [22] | Liu YJ, Chen S, Chen JD, et al. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant(Camellia sinensis)[J]. BMC Plant Biol, 2023, 23(1): 206. |
| [23] | 徐俊, 章法源, 安树康. 旱柳育苗造林技术规程[J]. 乡村科技, 2020, 11(34): 84-85. |
| Xu J, Zhang FY, An SK. Technical specification for seedling raising and afforestation of Salix matsudana[J]. Rural Science and Technology, 2020, 11(34): 84-85. | |
| [24] | 张博. 旱柳育苗造林技术研究[J]. 特种经济动植物, 2023, 26(1): 145-147. |
| Zhang B. Study on seedling raising and afforestation techniques of Salix matsudana[J]. Spec Econ Anim Plants, 2023, 26(1): 145-147. | |
| [25] | Chen YH, Dai YH, Li YX, et al. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5[J]. BMC Plant Biol, 2022, 22(1): 102. |
| [26] | Kang HG, Kim J, Kim B, et al. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana[J]. Plant Sci, 2011, 180(4): 634-641. |
| [27] | Xie JM, Chen YR, Cai GJ, et al. Tree Visualization By One Table(tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Res, 2023, 51(W1): W587-W592. |
| [28] |
Li HG, Zhang DF, Xie K, et al. Efficient and high-throughput pseudorecombinant-chimeric cucumber mosaic virus-based VIGS in maize[J]. Plant Physiol, 2021, 187(4): 2865-2876.
doi: 10.1093/plphys/kiab443 pmid: 34606612 |
| [29] |
Shen ZD, Sun J, Yao J, et al. High rates of virus-induced gene silencing by tobacco rattle virus in Populus[J]. Tree Physiol, 2015, 35(9): 1016-1029.
doi: 10.1093/treephys/tpv064 pmid: 26209619 |
| [30] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J]. Curr Opin Plant Biol, 2014, 21: 133-139.
doi: S1369-5266(14)00106-X pmid: 25104049 |
| [31] |
Sparkes IA, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nat Protoc, 2006, 1(4): 2019-2025.
doi: 10.1038/nprot.2006.286 pmid: 17487191 |
| [32] | Liang YN, Jiang YL, Du M, et al. ZmASR3 from the maize ASR gene family positively regulates drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2019, 20(9): 2278. |
| [33] | Hu W, Huang C, Deng XM, et al. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco[J]. Plant, Cell Environ, 2013, 36(8): 1449-1464. |
| [34] | Song Y, Gao MX, Xu ZX, et al. Temporal and spatial characteristics of soil salinization and its impact on cultivated land productivity in the BOHAI rim region[J]. Water, 2023, 15(13): 2368. |
| [35] | 王世平, 陈月, 潘大伟, 等. 盐碱地治理研究综述: 现状、问题与对策[J]. 化工矿物与加工, 2023, 52(11): 59-68. |
| Wang SP, Chen Y, Pan DW, et al. Review on salt marshes management: Status, problems and countermeasures[J]. Ind Miner Process, 2023, 52(11): 59-68. | |
| [36] | Li WJ, Sun J, Zhang XQ, et al. The mechanisms underlying salt resistance mediated by exogenous application of 24-epibrassinolide in peanut[J]. Int J Mol Sci, 2022, 23(12): 6376. |
| [37] | Wang LR, Du M, Wang B, et al. Transcriptome analysis of halophyte Nitraria tangutorum reveals multiple mechanisms to enhance salt resistance[J]. Sci Rep, 2022, 12(1): 14031. |
| [38] | Guo M, Wang XS, Guo HD, et al. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review[J]. Front Plant Sci, 2022, 13: 949541. |
| [39] | Ma X, Zhang Q, Ou YB, et al. Transcriptome and low-affinity sodium transport analysis reveals salt tolerance variations between two poplar trees[J]. Int J Mol Sci, 2023, 24(6): 5732. |
| [40] | Guo JR, Shan CD, Zhang YF, et al. Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants[J]. Front Plant Sci, 2022, 13: 854116. |
| [41] | Xie W, Ding CQ, Hu HT, et al. Molecular events of rice AP2/ERF transcription factors[J]. Int J Mol Sci, 2022, 23(19): 12013. |
| [42] |
Xie ZL, Nolan TM, Jiang H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci, 2019, 10: 228.
doi: 10.3389/fpls.2019.00228 pmid: 30873200 |
| [43] | Dietz KJ, Vogel MO, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling[J]. Protoplasma, 2010, 245(1/2/3/4): 3-14. |
| [44] | Zhang J, Yuan HW, Li YJ, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz[J]. Hortic Res, 2020, 7(1): 201. |
| [45] |
Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Crit Rev Biotechnol, 2020, 40(6): 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
| [46] | Chen WS, Shi Y, Wang CY, et al. AtERF13 and AtERF6 double knockout fine-tunes growth and the transcriptome to promote cadmium tolerance in Arabidopsis[J]. Gene, 2024, 911: 148348. |
| [47] | Wang CY, Gao ZQ, Shi Y, et al. Metal-responsive elements confer cadmium response in Arabidopsis[J]. Planta, 2023, 257(3): 53. |
| [48] | Kawaguchi J, Hayashi K, Desaki Y, et al. JUL1, Ring-type E3 ubiquitin ligase, is involved in transcriptional reprogramming for ERF15-mediated gene regulation[J]. Int J Mol Sci, 2023, 24(2): 987. |
| [49] |
Dubois M, Van den Broeck L, Claeys H, et al. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis[J]. Plant Physiol, 2015, 169(1): 166-179.
doi: 10.1104/pp.15.00335 pmid: 25995327 |
| [50] | Ding H, Cui SY, Cui XY, et al. Anti-stress effects of combined block of glucocorticoid and mineralocorticoid receptors in the paraventricular nucleus of the hypothalamus[J]. Br J Pharmacol, 2021, 178(18): 3696-3707. |
| [51] | Luo DJ, Lu H, Wang CJ, et al. Physiological and DNA methylation analysis provides epigenetic insights into kenaf cadmium tolerance heterosis[J]. Plant Sci, 2023, 331: 111663. |
| [52] |
Harris PJ, Burrell MM, Emes MJ, et al. Effects of post-anthesis high-temperature stress on carbon partitioning and starch biosynthesis in a spring wheat(Triticum aestivum L.) adapted to moderate growth temperatures[J]. Plant Cell Physiol, 2023, 64(7): 729-745.
doi: 10.1093/pcp/pcad030 pmid: 37026703 |
| [53] |
Chen TZ, Li WJ, Hu XH, et al. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress[J]. Plant Cell Physiol, 2015, 56(5): 917-929.
doi: 10.1093/pcp/pcv019 pmid: 25657343 |
| [54] |
Zhang LC, Liu GX, Zhao GY, et al. Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis[J]. Plant Cell Physiol, 2014, 55(10): 1802-1812.
doi: 10.1093/pcp/pcu109 pmid: 25146486 |
| [55] | Jia T, Hou JR, Iqbal MZ, et al. Overexpression of the white clover TrSAMDC1 gene enhanced salt and drought resistance in Arabidopsis thaliana[J]. Plant Physiol Biochem, 2021, 165: 147-160. |
| [1] | LI Cai-xia, LI Yi, MU Hong-xiu, LIN Jun-xuan, BAI Long-qiang, SUN Mei-hua, MIAO Yan-xiu. Identification and Bioinformatics Analysis of the bHLH Transcription Factor Family in Cucurbita moschata Duch. [J]. Biotechnology Bulletin, 2025, 41(1): 186-197. |
| [2] | YUAN Liu-jiao, HUANG Wen-lin, CHEN Chong-zhi, LIANG Min, HUANG Zi-qi, CHEN Xue-xue, CHEN Ri-Meng, WANG Li-yun. Effects of Salt Stress on Physiological Characteristics, Ultrastructure and Medicinal Components of Pogostemon cablin Leaves [J]. Biotechnology Bulletin, 2025, 41(1): 230-239. |
| [3] | SONG Qian-na, DUAN Yong-hong, FENG Rui-yun. Establishment of CRISPR/Cas9-mediated Highly Efficient Gene Editing System in Microtubers of Potatoes [J]. Biotechnology Bulletin, 2024, 40(9): 33-41. |
| [4] | QIAO Yan, YANG Fang, REN Pan-rong, QI Wei-liang, AN Pei-pei, LI Qian, LI Dan, XIAO Jun-fei. Cloning and Function Analysis of the ScDHNS Gene of Crotonase/Enoyl-CoA Superfamily from a Wild Potato Species [J]. Biotechnology Bulletin, 2024, 40(9): 92-103. |
| [5] | WU Shuai, XIN Yan-ni, MAI Chun-hai, MU Xiao-ya, WANG Min, YUE Ai-qin, ZHAO Jin-zhong, WU Shen-jie, DU Wei-jun, WANG Li-xiang. Genome-wide Identification and Stress Response Analysis of Soybean GS Gene Family [J]. Biotechnology Bulletin, 2024, 40(8): 63-73. |
| [6] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
| [7] | SHEN Zhen-hui, CAO Yao, YANG Lin-lei, LUO Xiang-ying, ZI Ling-shan, LU Qing-qing, LI Rong-chun. Cloning and Bioinformatics Analysis of the Ergothioneine Biosynthesis Genes in Naematelia aurantialba and Stereum hirsutum [J]. Biotechnology Bulletin, 2024, 40(7): 259-272. |
| [8] | HUANG Dan, JIANG Shan, PENG Tao. Cloning of FfCYP98 Gene and Its Functional Analysis in Folioceros fuciformis [J]. Biotechnology Bulletin, 2024, 40(7): 273-284. |
| [9] | ZHANG Mei-yu, ZHAO Yu-bin, WANG Ling-yun, SONG Yuan-da, ZHAO Xin-he, REN Xiao-jie. Research Progress in the Production of Functional Fatty Acid DHA by Microalga Thraustochytrids [J]. Biotechnology Bulletin, 2024, 40(6): 81-94. |
| [10] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
| [11] | HAO Si-yi, ZHANG Jun-ke, WANG Bin, QU Peng-yan, LI Rui-de, CHENG Chun-zhen. Cloning and Expression Analysis of Banana EARLY FLOWERING 3(ELF3)Genes [J]. Biotechnology Bulletin, 2024, 40(5): 131-140. |
| [12] | LI Jing-yan, ZHOU Jia-jing, YUAN Yuan, SU Xiao-yi, QIAO Wen-hui, XUE Yan-lei, LI Guo-jing, WANG Rui-gang. Response of Arabidopsis AtiPGAM2 Gene to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(5): 215-224. |
| [13] | DU Ze-guang, REN Shao-wen, ZHANG Feng-qin, LI Mei-lan, LI Gai-zhen, QI Xian-hui. Cloning,Expression and Functional Identification of BrMLP328 Gene in Brassica rapa subsp. pekinensis [J]. Biotechnology Bulletin, 2024, 40(4): 122-129. |
| [14] | LI Hui, WEN Yu-fang, WANG Yue, JI Chao, SHI Guo-you, LUO Ying, ZHOU Yong, LI Zhi-min, WU Xiao-yu, YANG You-xin, LIU Jian-ping. Expression Characteristics and Functions of CaPIF4 in Capsicum annuum Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 148-158. |
| [15] | LIU Huan-huan, YANG Li-chun, LI Huo-gen. Cloning and Functional Analysis of LtMYB305 in Liriodendron tulipifera [J]. Biotechnology Bulletin, 2024, 40(4): 179-188. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||