Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 172-180.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0207
Previous Articles Next Articles
ZHU Shi-fei1,2(), LIU Jing1, ZHANG Jia-qian1,2, HUANG Wen-kun2, PENG De-liang2, KONG Ling-an2, PENG Huan2,3()
Received:
2024-03-04
Online:
2024-09-26
Published:
2024-10-12
Contact:
PENG Huan
E-mail:zsf121355@163.com;penghuan@caas.cn
ZHU Shi-fei, LIU Jing, ZHANG Jia-qian, HUANG Wen-kun, PENG De-liang, KONG Ling-an, PENG Huan. Research Progress in Molecular Mechanism of Interaction Between Rice and Meloidogyne graminicola[J]. Biotechnology Bulletin, 2024, 40(9): 172-180.
[1] |
Deng NY, Grassini P, Yang HS, et al. Closing yield gaps for rice self-sufficiency in China[J]. Nat Commun, 2019, 10(1): 1725.
doi: 10.1038/s41467-019-09447-9 pmid: 30979872 |
[2] |
Mantelin S, Bellafiore S, Kyndt T. Meloidogyne graminicola: a major threat to rice agriculture[J]. Mol Plant Pathol, 2017, 18(1): 3-15.
doi: 10.1111/mpp.12394 pmid: 26950515 |
[3] | 谢家廉, 杨芳, 黄文坤, 等. 近年水稻主要线虫病害的研究进展[J]. 植物保护学报, 2017, 44(6): 940-949. |
Xie JL, Yang F, Huang WK, et al. Advances in major rice parasitic nematodes in recent years[J]. J Plant Prot, 2017, 44(6): 940-949. | |
[4] | Rusinque L, Maleita C, Abrantes I, et al. Meloidogyne graminicola-a threat to rice production: review update on distribution, biology, identification, and management[J]. Biology, 2021, 10(11): 1163. |
[5] |
Haegeman A, Mantelin S, Jones JT, et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene, 2012, 492(1): 19-31.
doi: 10.1016/j.gene.2011.10.040 pmid: 22062000 |
[6] | Jagdale S, Rao U, Giri AP. Effectors of root-knot nematodes: an arsenal for successful parasitism[J]. Front Plant Sci, 2021, 12: 800030. |
[7] | Israel P, Rao YS, Rao YRVJ. Investigations on nematodes in rice and rice soils.I.[J]. Oryza, 1963, 1(2): 125-128. |
[8] | Rich JR, Brito JA, Kaur R, et al. Weed species as hosts of meloidogyne: A review[J]. Nematropica, 2009, 39(2): 157-185. |
[9] | Pokharel RR, Abawi GS, Duxbury JM, et al. Variability and the recognition of two races in Meloidogyne graminicola[J]. Australas Plant Pathol, 2010, 39(4): 326-333. |
[10] | Upadhyay V, Bhardwaj N, Neelam R, et al. Meloidogyne Graminicola(golden and birchfield)threat to rice production.res[J]. J Agric For Sci, 2014, 2, 31-36 |
[11] | Gilces CT, Santillan DN, Velasco L. Plant-parasitic nematodes associated with rice in Ecuador[J]. Nematropica, 2016, 46: 45-53. |
[12] | Fanelli E, Cotroneo A, Carisio L, et al. Detection and molecular characterization of the rice root-knot nematode Meloidogyne graminicola in Italy[J]. Eur J Plant Pathol, 2017, 149(2): 467-476. |
[13] | 赵洪海, 刘维志, 梁晨, 等. 根结线虫在中国的一新纪录种——拟禾本科根结线虫Meloidogyne graminicol[J]. 植物病理学报, 2001, 31(2): 184-188. |
Zhao HH, Liu WZ, Liang C, et al. meloidogyne graminicola, a new record species from China[J]. Acta Phytopathol Sin, 2001, 31(2): 184-188. | |
[14] | 杜树勋. 早稻秧田稻根结线虫病的发生调查初报[J]. 广西植保, 2003, 16(1): 3-5. |
Du SX. Preliminary report on the occurrence of root-knot nematode disease in early rice seedling field[J]. Guangxi Plant Prot, 2003, 16(1): 3-5. | |
[15] |
Song ZQ, Zhang DY, Liu Y, et al. First report of Meloidogyne graminicola on rice(Oryza sativa)in Hunan Province, China[J]. Plant Dis, 2017, 101(12): 2153.
doi: 10.1094/PDIS-06-17-0844-PDN |
[16] | Tian ZL, Barsalote EM, Li XL, et al. First report of root-knot nematode, Meloidogyne graminicola, on rice in Zhejiang, eastern China[J]. Plant Dis, 2017, 101(12): 2152. |
[17] | Wang GF, Xiao LY, Luo HG, et al. First report of Meloidogyne graminicola on rice in Hubei Province of China[J]. Plant Dis, 2017, 101(6): 1056. |
[18] |
Xie JL, Xu X, Yang F, et al. First report of root-knot nematode, Meloidogyne graminicola, on rice in Sichuan Province, southwest China[J]. Plant Dis, 2019, 103(8): 2142.
doi: 10.1094/PDIS-03-19-0502-PDN |
[19] | Ju YL, Wu X, Tan GJ, et al. First report of Meloidogyne graminicola on rice in Anhui Province, China[J]. Plant Dis, 2021, 105(2): 512. |
[20] | Liu MY, Liu J, Huang WK, et al. First report of Meloidogyne graminicola on rice in Henan Province, China[J]. Plant Dis, 2021, 105(10): 3308. |
[21] | 杨芳, 徐幸, 郭荣, 等. 中国北方稻田及其周边环境中根结线虫种类鉴定[J]. 西北农林科技大学学报: 自然科学版, 2024, 52(1): 98-108. |
Yang F, Xu X, Guo R, et al. Identification of root-knot nematode species from paddy field and surrounding environment in Northern China[J]. J Northwest A F Univ Nat Sci Ed, 2024, 52(1): 98-108. | |
[22] | Sekhon A, Dhillon NK, Bhatia D, et al. Novel sources of combined resistance against rice root- knot nematode and brown spot disease in Oryza rufipogon[J]. Rice Sci, 2023, 30(6): 504-508. |
[23] | 黄文坤, 向超, 刘莹, 等. 水稻拟禾本科根结线虫发生与防治[J]. 植物病理学报, 2018, 48(3): 289-296. |
Huang WK, Xiang C, Liu Y, et al. Rearch progress on the occurrence and controlling of root-knot nematode Meloidogyne graminicola in rice[J]. Acta Phytopathol Sin, 2018, 48(3): 289-296. | |
[24] | Buthanna Narasimhamurthy H, Sehgal M, Ganesha Naik R. Rice root-knot nematode(Meloidogyne graminicola): A major menace in rice production[M]//Sustainable Rice Production - Challenges, Strategies and Opportunities. London: IntechOpen, 2023: 1-14. |
[25] | Hazarika BP. Meloidogyne graminicola and Sclerotium rolfsii interaction in rice[J]. Int Rice Res Notes, 2001, 26(1):22. |
[26] | Kyndt T, Zemene HY, Haeck A, et al. Below-ground attack by the root knot nematode Meloidogyne graminicola predisposes rice to blast disease[J]. Mol Plant Microbe Interact, 2017, 30(3): 255-266. |
[27] | Nguyen HT, Vang S, Phan NT, et al. Identification and characterization of a virulent population of Meloidogyne graminicola[J]. Australas Plant Pathol, 2023, 52(5): 391-405. |
[28] | Liu MY, Shao HD, Wu YY, et al. Meloidogyne graminicola population structure in China suggests a south-to-north expansion[J]. Plant Dis, 2023, 107(7): 2070-2080. |
[29] | Cosgrove DJ. Structure and growth of plant cell walls[J]. Nat Rev Mol Cell Biol, 2024, 25(5): 340-358. |
[30] | Rosso MN, Favery B, Piotte C, et al. Isolation of a cDNA encoding a beta-1, 4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism[J]. Mol Plant Microbe Interact, 1999, 12(7): 585-591. |
[31] | Chen JS, Li ZW, Lin BR, et al. A Meloidogyne graminicola pectate lyase is involved in virulence and activation of host defense responses[J]. Front Plant Sci, 2021, 12: 651627. |
[32] | Phan NT, Orjuela J, Danchin EGJ, et al. Genome structure and content of the rice root-knot nematode(Meloidogyne graminicola)[J]. Ecol Evol, 2020, 10(20): 11006-11021. |
[33] | Petitot AS, Dereeper A, Agbessi M, et al. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants[J]. Mol Plant Pathol, 2016, 17(6): 860-874. |
[34] | Qin L, Kudla U, Roze EHA, et al. A nematode expansin acting on plants[J]. Nature, 2004, 427: 30. |
[35] | Escobar C, Barcala M, Cabrera J, et al. Overview of root-knot nematodes and giant cells[M]// Advances in Botanical Research. Amsterdam: Elsevier, 2015: 1-32. |
[36] | Ji HL, Gheysen G, Denil S, et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots[J]. J Exp Bot, 2013, 64(12): 3885-3898. |
[37] |
黄文坤, 于敬文, 贾建平, 等. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0332 |
Huang WK, Yu JW, Jia JP, et al. Effects of plant hormones on the establishment and development of plant parasitic nematodes’ feeding sites[J]. Biotechnol Bull, 2021, 37(7): 56-64. | |
[38] | Xue BY, Hamamouch N, Li CY, et al. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots[J]. Phytopathology, 2013, 103(2): 175-181. |
[39] |
Engler JD, Rodiuc N, Smertenko A, et al. Plant actin cytoskeleton re-modeling by plant parasitic nematodes[J]. Plant Signal Behav, 2010, 5(3): 213-217.
doi: 10.4161/psb.5.3.10741 pmid: 20038822 |
[40] | Leelarasamee N, Zhang L, Gleason C. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism[J]. PLoS Pathog, 2018, 14(3): e1006947. |
[41] | Wang GD, Fiers M. CLE peptide signaling during plant development[J]. Protoplasma, 2010, 240(1): 33-43. |
[42] | Somvanshi VS, Dash M, Bhat CG, et al. An improved draft genome assembly of Meloidogyne graminicola IARI strain using long-read sequencing[J]. Gene, 2021, 793: 145748. |
[43] | Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. |
[44] |
Torres MA, Jones JDG, Dangl JL. Reactive oxygen species signaling in response to pathogens[J]. Plant Physiol, 2006, 141(2): 373-378.
doi: 10.1104/pp.106.079467 pmid: 16760490 |
[45] | 姚珂, 郑经武, 黄文坤, 等. 植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J]. 植物病理学报, 2020, 50(5): 517-530. |
Yao K, Zheng JW, Huang WK, et al. Research progress on the regulation of host defense by plant parasitic nematode effectors[J]. Acta Phytopathol Sin, 2020, 50(5): 517-530. | |
[46] |
Campos EG, Jesuino RS, Dantas AD, et al. Oxidative stress response in Paracoccidioides brasiliensis[J]. Genet Mol Res, 2005, 4(2): 409-429.
pmid: 16110454 |
[47] | Song HD, Lin BR, Huang QL, et al. The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice[J]. J Exp Bot, 2021, 72(15): 5638-5655. |
[48] |
Zhuo K, Naalden D, Nowak S, et al. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism[J]. Mol Plant Pathol, 2019, 20(3): 346-355.
doi: 10.1111/mpp.12759 pmid: 30315612 |
[49] |
Naalden D, Haegeman A, de Almeida-Engler J, et al. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses[J]. Mol Plant Pathol, 2018, 19(11): 2416-2430.
doi: 10.1111/mpp.12719 pmid: 30011122 |
[50] | Chen JS, Hu LL, Sun LH, et al. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism[J]. Mol Plant Pathol, 2018, 19(8): 1942-1955. |
[51] | Liu J, Zhang JQ, Wei Y, et al. The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin-like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola[J]. Plant Cell Environ, 2024, 47(5): 1732-1746. |
[52] | Chen JS, Lin BR, Huang QL, et al. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism[J]. PLoS Pathog, 2017, 13(4): e1006301. |
[53] | Dimkpa SON, Lahari Z, Shrestha R, et al. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes[J]. J Exp Bot, 2016, 67(4): 1191-1200. |
[54] | Phan NT, De Waele D, Lorieux M, et al. A hypersensitivity-like response to Meloidogyne graminicola in rice(Oryza sativa)[J]. Phytopathology, 2018, 108(4): 521-528. |
[55] | Feng H, Zhou CR, Zhu F, et al. Resistance analysis of the rice variety Huaidao 5 against root-knot nematode Meloidogyne graminicola[J]. J Integr Agric, 2023, 22(10): 3081-3089. |
[56] | Nguyen HT, Mantelin S, Ha CV, et al. Insights into the genetics of the Zhonghua 11 resistance to Meloidogyne graminicola and its molecular determinism in rice[J]. Front Plant Sci, 2022, 13: 854961. |
[57] | Beesa N, Jindapunnapat K, Chinnasri B, et al. Nematode development and changes in enzymatic defensive activity in rice plants upon Meloidogyne graminicola infection for preliminary screening of resistant cultivars[J]. Songklanakarin J Sci Technol, 2022, 44(1): 26-31. |
[58] | Zhan LP, Ding Z, Peng DL, et al. Evaluation of Chinese rice varieties resistant to the root-knot nematode Meloidogyne graminicola[J]. J Integr Agric, 2018, 17(3): 621-630. |
[59] |
Sato K, Kadota Y, Shirasu K. Plant immune responses to parasitic nematodes[J]. Front Plant Sci, 2019, 10: 1165.
doi: 10.3389/fpls.2019.01165 pmid: 31616453 |
[60] | Dash M, Somvanshi VS, Budhwar R, et al. A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes[J]. Planta, 2021, 253(5): 108. |
[61] | Xiang C, Yang XP, Peng DL, et al. Proteome-wide analyses provide new insights into the compatible interaction of rice with the root-knot nematode Meloidogyne graminicola[J]. Int J Mol Sci, 2020, 21(16): 5640. |
[62] | Hada A, Dutta TK, Singh N, et al. A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola[J]. PLoS One, 2020, 15(9): e0239085. |
[63] |
Shrestha R, Uzzo F, Wilson MJ, et al. Physiological and genetic mapping study of tolerance to root-knot nematode in rice[J]. New Phytol, 2007, 176(3): 665-672.
doi: 10.1111/j.1469-8137.2007.02185.x pmid: 17822410 |
[64] |
Galeng-Lawilao J, Kumar A, De Waele D. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola[J]. BMC Genet, 2018, 19(1): 53.
doi: 10.1186/s12863-018-0656-1 pmid: 30081817 |
[65] | Lahari Z, Ribeiro A, Talukdar P, et al. QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice(Oryza sativa L.)[J]. Euphytica, 2019, 215(7): 117. |
[66] | Wang XM, Cheng R, Xu DC, et al. MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode[J]. Nat Commun, 2023, 14(1): 3354. |
[67] |
Nahar K, Kyndt T, De Vleesschauwer D, et al. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiol, 2011, 157(1): 305-316.
doi: 10.1104/pp.111.177576 pmid: 21715672 |
[68] | Nahar K, Kyndt T, Hause B, et al. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J]. Mol Plant Microbe Interact, 2013, 26(1): 106-115. |
[69] |
Kyndt T, Nahar K, Haeck A, et al. Interplay between carotenoids, abscisic acid and jasmonate guides the compatible rice- Meloidogyne graminicola interaction[J]. Front Plant Sci, 2017, 8: 951.
doi: 10.3389/fpls.2017.00951 pmid: 28642770 |
[70] | Yimer HZ, Nahar K, Kyndt T, et al. Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice[J]. New Phytol, 2018, 218(2): 646-660. |
[71] | Lahari Z, Ullah C, Kyndt T, et al. Strigolactones enhance root-knot nematode(Meloidogyne graminicola)infection in rice by antagonizing the jasmonate pathway[J]. New Phytol, 2019, 224(1): 454-465. |
[72] | Mei CS, Qi M, Sheng GY, et al. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Mol Plant Microbe Interact, 2006, 19(10): 1127-1137. |
[73] |
Koornneef A, Pieterse CMJ. Cross talk in defense signaling[J]. Plant Physiol, 2008, 146(3): 839-844.
doi: 10.1104/pp.107.112029 pmid: 18316638 |
[74] |
Dai DD, Xie CS, Zhou YY, et al. Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization[J]. Nat Commun, 2023, 14(1): 7156.
doi: 10.1038/s41467-023-42700-w pmid: 37935661 |
[75] |
Rosso MN, Jones JT, Abad P. RNAi and functional genomics in plant parasitic nematodes[J]. Annu Rev Phytopathol, 2009, 47: 207-232.
doi: 10.1146/annurev.phyto.112408.132605 pmid: 19400649 |
[76] | Kong LG, Shi X, Chen D, et al. Host-induced silencing of a nematode chitin synthase gene enhances resistance of soybeans to both pathogenic Heterodera glycines and Fusarium oxysporum[J]. Plant Biotechnol J, 2022, 20(5): 809-811. |
[77] |
Lu H, McClung CR, Zhang C. Tick tock: circadian regulation of plant innate immunity[J]. Annu Rev Phytopathol, 2017, 55: 287-311.
doi: 10.1146/annurev-phyto-080516-035451 pmid: 28590878 |
[78] | Wang W, Barnaby JY, Tada Y, et al. Timing of plant immune responses by a central circadian regulator[J]. Nature, 2011, 470(7332): 110-114. |
[79] |
Li R, Llorca LC, Schuman MC, et al. ZEITLUPE in the roots of wild tobacco regulates jasmonate-mediated nicotine biosynthesis and resistance to a generalist herbivore[J]. Plant Physiol, 2018, 177(2): 833-846.
doi: 10.1104/pp.18.00315 pmid: 29720557 |
[80] | Zhou M, Wang W, Karapetyan S, et al. Redox rhythm reinforces the circadian clock to gate immune response[J]. Nature, 2015, 523(7561): 472-476. |
[1] | ZOU Xiu-wei, YUE Jia-ni, LI Zhi-yu, DAI Liang-ying, LI Wei. Functional Analysis of Rice Heat Shock Transcription Factor HsfA2b Regulating the Resistance to Abiotic Stresses [J]. Biotechnology Bulletin, 2024, 40(2): 90-98. |
[2] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[3] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[4] | LU Zhen-wan, LI Xue-qi, HUANG Jin-guang, ZHOU Huan-bin. Creation of Glyphosate-tolerant Rice by Cytosine Base Editing [J]. Biotechnology Bulletin, 2023, 39(2): 63-69. |
[5] | PENG Huan, ZHAO Wei, YAO Ke, JIANG Chen, HUANG Wen-kun, KONG Ling-an, ZHENG Jing-wu, PENG De-liang. Research Progress on the Genomics of Plant-Parasitic Nematode [J]. Biotechnology Bulletin, 2021, 37(7): 3-13. |
[6] | ZHU Ping, DU Li-jie, MENG Kun, XUE Juan, YANG Jin, LI Shan. Research Progress on the Effects of T3SS Effectors on Apoptosis and Pyroptosis of Host Cells [J]. Biotechnology Bulletin, 2019, 35(4): 178-187. |
[7] | TAN Xin-wei, JIN Yu-ting, LIU Mei-tong, WANG Qun-qing. Molecular Recognition and Counter-recognition Mechanism in Phytophthora sojae-host Interactions [J]. Biotechnology Bulletin, 2018, 34(2): 2-9. |
[8] | LIU Xiu-feng, YUAN Wen-ya, SUN Zhen-yu, LIANG Dan, SHI Xiao-wei. Effectors and Their Involvement in Pathogenicity of Wheat Stripe Rust Fungus [J]. Biotechnology Bulletin, 2018, 34(2): 112-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||