Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (9): 335-344.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0418
ZHANG Ya-qi1(
), WANG Qin-qin1, SHEN Xia1, LI Xu-miao1, GAO Min1, LI Jun2, LI Chen1(
), WANG Hui1(
)
Received:2025-04-21
Online:2025-09-26
Published:2025-09-24
Contact:
LI Chen, WANG Hui
E-mail:zhangyaqimiao@sjtu.edu.cn;cli@shsmu.edu.cn;huiwang@shsmu.edu.cn
ZHANG Ya-qi, WANG Qin-qin, SHEN Xia, LI Xu-miao, GAO Min, LI Jun, LI Chen, WANG Hui. Metabolite Early Warning Model for the Risk of Early Progression in Esophageal Squamous Cell Carcinoma[J]. Biotechnology Bulletin, 2025, 41(9): 335-344.
指标 Index | 无进展组 Non-progress group (N=56) | 进展组 Progress group (N=28) | P值 P value |
|---|---|---|---|
| 年龄(岁) Age (years) | 60.02 ± 6.31 | 61.32 ± 6.21 | 0.372 |
| 性别 Sex | 1 | ||
| 男 Male | 36 (64.3%) | 18 (64.3%) | |
| 女 Female | 20 (35.7%) | 10 (35.7%) | |
| 身体质量指数 BMI (kg/m2) | 23.86 ± 2.16 | 23.34 ± 1.87 | 0.279 |
Table 1 Baseline characteristics of the subjects in this study
指标 Index | 无进展组 Non-progress group (N=56) | 进展组 Progress group (N=28) | P值 P value |
|---|---|---|---|
| 年龄(岁) Age (years) | 60.02 ± 6.31 | 61.32 ± 6.21 | 0.372 |
| 性别 Sex | 1 | ||
| 男 Male | 36 (64.3%) | 18 (64.3%) | |
| 女 Female | 20 (35.7%) | 10 (35.7%) | |
| 身体质量指数 BMI (kg/m2) | 23.86 ± 2.16 | 23.34 ± 1.87 | 0.279 |
| [1] | Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma [J]. Gastroenterology, 2018, 154(2): 360-373. |
| [2] | Morgan E, Soerjomataram I, Rumgay H, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020 [J]. Gastroenterology, 2022, 163(3): 649-658.e2. |
| [3] | National Health Commission Of The People's Republic Of China. Chinese guidelines for diagnosis and treatment of esophageal carcinoma 2018 (English version) [J]. Chin J Cancer Res, 2019, 31(2): 223-258. |
| [4] | Lagergren J, Smyth E, Cunningham D, et al. Oesophageal cancer [J]. Lancet, 2017, 390(10110): 2383-2396. |
| [5] | Mashimo H, Gordon SR, Singh SK. Advanced endoscopic imaging for detecting and guiding therapy of early neoplasias of the esophagus [J]. Ann N Y Acad Sci, 2020, 1482(1): 61-76. |
| [6] | Wang GQ, Jiao GG, Chang FB, et al. Long-term results of operation for 420 patients with early squamous cell esophageal carcinoma discovered by screening [J]. Ann Thorac Surg, 2004, 77(5): 1740-1744. |
| [7] | Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021 [J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33. |
| [8] | Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system [J]. Histopathology, 2020, 76(2): 182-188. |
| [9] | Wei WQ, Hao CQ, Guan CT, et al. Esophageal histological precursor lesions and subsequent 8.5-year cancer risk in a population-based prospective study in China [J]. Am J Gastroenterol, 2020, 115(7): 1036-1044. |
| [10] | 赫捷, 陈万青, 李兆申, 等. 中国食管癌筛查与早诊早治指南(2022,北京) [J]. 中国肿瘤, 2022, 31(6): 401-436. |
| He J, Chen WQ, Li ZS, et al. China guideline for the screening, early detection and early treatment of esophageal cancer (2022, Beijing) [J]. China Cancer, 2022, 31(6): 401-436. | |
| [11] | 朱林林, 董培雯, 粟兴, 等. 食管黏膜低级别上皮内瘤变内镜特点及病理转归分析 [J]. 四川大学学报: 医学版, 2018, 49(6): 849-853. |
| Zhu LL, Dong PW, Su X, et al. Endoscopic characteristics and pathological analysis of esophageal low-grade intraepithelial neoplasm [J]. J Sichuan Univ Med Sci Ed, 2018, 49(6): 849-853. | |
| [12] | Rinschen MM, Ivanisevic J, Giera M, et al. Identification of bioactive metabolites using activity metabolomics [J]. Nat Rev Mol Cell Biol, 2019, 20(6): 353-367. |
| [13] | Wishart DS. Metabolomics for investigating physiological and pathophysiological processes [J]. Physiol Rev, 2019, 99(4): 1819-1875. |
| [14] | Huang K, Han Y, Chen YH, et al. Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy [J]. Mol Cancer, 2025, 24(1): 7. |
| [15] | Zhang HL, Chen P, Yan HX, et al. Targeting mTORC2/HDAC3 inhibits stemness of liver cancer cells against glutamine starvation [J]. Adv Sci, 2022, 9(20): e2103887. |
| [16] | Dong SH, Liang S, Cheng ZQ, et al. ROS/PI3K/Akt and Wnt/β- catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer [J]. J Exp Clin Cancer Res, 2022, 41(1): 15. |
| [17] | Yang K, Wang XK, Song CH, et al. The role of lipid metabolic reprogramming in tumor microenvironment [J]. Theranostics, 2023, 13(6): 1774-1808. |
| [18] | Coloff JL, Murphy JP, Braun CR, et al. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells [J]. Cell Metab, 2016, 23(5): 867-880. |
| [19] | Ge TX, Gu X, Jia RB, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities [J]. Cancer Commun, 2022, 42(11): 1049-1082. |
| [20] | Lv JL, Wang JL, Shen XT, et al. A serum metabolomics analysis reveals a panel of screening metabolic biomarkers for esophageal squamous cell carcinoma [J]. Clin Transl Med, 2021, 11(5): e419. |
| [21] | Taherizadeh M, Khoshnia M, Shams S, et al. Plasma changes of branched-chain amino acid in patients with esophageal cancer [J]. Middle East J Dig Dis, 2021, 13(1): 49-53. |
| [22] | Yu JY, Zhao JH, Zhang MJ, et al. Metabolomics studies in gastrointestinal cancer: a systematic review [J]. Expert Rev Gastroenterol Hepatol, 2020, 14(1): 9-25. |
| [23] | Zang B, Wang W, Wang YQ, et al. Metabolomic characterization reveals ILF2 and ILF3 affected metabolic adaptions in esophageal squamous cell carcinoma [J]. Front Mol Biosci, 2021, 8: 721990. |
| [24] | Liu XS, Hong RX, Du PN, et al. The metabolic genomic atlas reveals potential drivers and clinically relevant insights into the etiology of esophageal squamous cell carcinoma [J]. Theranostics, 2022, 12(14): 6160-6178. |
| [25] | Guo ZX, Ma JL, Zhang JQ, et al. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects [J]. Front Immunol, 2025, 16: 1524801. |
| [26] | Wang ZY, Sun XY, Li ZH, et al. Metabolic reprogramming in esophageal squamous cell carcinoma [J]. Front Pharmacol, 2024, 15: 1423629. |
| [27] | Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression [J]. J Transl Med, 2022, 20(1): 127. |
| [28] | Shen X, Guo SY, Liang NN, et al. Biomarker discovery and metabolic profiling in serum of cardiovascular disease patients with untargeted metabolomics and machine learning [J]. Clin Transl Med, 2024, 14(6): e1722. |
| [29] | Shen X, Wang C, Liang NN, et al. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout [J]. Arthritis Rheumatol, 2021, 73(9): 1738-1748. |
| [30] | Che JJ, Zhao YB, Gu BB, et al. Untargeted serum metabolomics reveals potential biomarkers and metabolic pathways associated with the progression of gastroesophageal cancer [J]. BMC Cancer, 2023, 23(1): 1238. |
| [31] | Zhao YX, Zhao HP, Zhao MY, et al. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma [J]. World J Gastroenterol, 2024, 30(20): 2638-2656. |
| [32] | Wani S, Drahos J, Cook MB, et al. Comparison of endoscopic therapies and surgical resection in patients with early esophageal cancer: a population-based study [J]. Gastrointest Endosc, 2014, 79(2): 224-232.e1. |
| [33] | Wang GQ, Abnet CC, Shen Q, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population [J]. Gut, 2005, 54(2): 187-192. |
| [34] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
| [35] | Han BF, Zheng RS, Zeng HM, et al. Cancer incidence and mortality in China, 2022 [J]. J Natl Cancer Cent, 2024, 4(1): 47-53. |
| [36] | Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation [J]. Nat Rev Cancer, 2011, 11(12): 835-848. |
| [37] | Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36 [J]. Nature, 2017, 541(7635): 41-45. |
| [38] | Guerrero-Rodríguez SL, Mata-Cruz C, Pérez-Tapia SM, et al. Role of CD36 in cancer progression, stemness, and targeting [J]. Front Cell Dev Biol, 2022, 10: 1079076. |
| [39] | Platten M, Nollen EAA, Röhrig UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond [J]. Nat Rev Drug Discov, 2019, 18(5): 379-401. |
| [40] | Tanaka M, Szabó Á, Vécsei L. Redefining roles: a paradigm shift in tryptophan-kynurenine metabolism for innovative clinical applications [J]. Int J Mol Sci, 2024, 25(23): 12767. |
| [41] | Zhao Y, Ma CC, Cai RZ, et al. NMR and MS reveal characteristic metabolome atlas and optimize esophageal squamous cell carcinoma early detection [J]. Nat Commun, 2024, 15(1): 2463. |
| [42] | Baek AE, Yu YA, He SS, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells [J]. Nat Commun, 2017, 8(1): 864. |
| [43] | Chang CY, McDonnell DP. Molecular pathways: the metabolic regulator estrogen-related receptor α as a therapeutic target in cancer [J]. Clin Cancer Res, 2012, 18(22): 6089-6095. |
| [44] | Cai CM, Chen S, Ng P, et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors [J]. Cancer Res, 2011, 71(20): 6503-6513. |
| [45] | Jia W, Xie GX, Jia WP. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis [J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. |
| [46] | Cong JJ, Liu PP, Han ZL, et al. Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8+ T cell effector functions [J]. Immunity, 2024, 57(4): 876-889.e11. |
| [47] | Varanasi SK, Chen D, Liu YL, et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer [J]. Science, 2025, 387(6730): 192-201. |
| [48] | Wang PP, Song X, Zhao XK, et al. Serum metabolomic profiling reveals biomarkers for early detection and prognosis of esophageal squamous cell carcinoma [J]. Front Oncol, 2022, 12: 790933. |
| [49] | Danzi F, Pacchiana R, Mafficini A, et al. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism [J]. Signal Transduct Target Ther, 2023, 8(1): 137. |
| [50] | Chen C, Zheng T, Chen Y, et al. A systematic evaluation of quenching, extraction and analysis procedures for metabolomics study of the mechanism of QYSLD intervention in A549 cells [J]. Anal Bioanal Chem, 2024, 416(28): 6621-6638. |
| [51] | Ye W, Lin Y, Bezabeh T, et al. 1H NMR-based metabolomics of paired esophageal tumor tissues and serum samples identifies specific serum biomarkers for esophageal cancer [J]. NMR Biomed, 2021, 34(6): e4505. |
| [52] | Zhang S, Lu X, Hu CX, et al. Serum metabolomics for biomarker screening of esophageal squamous cell carcinoma and esophageal squamous dysplasia using gas chromatography-mass spectrometry [J]. ACS Omega, 2020, 5(41): 26402-26412. |
| [1] | LIU Yu-shi, LI Zhen, ZOU Yu-chen, TANG Wei-wei, LI Bin. Advances in Spatial Metabolomics in Medicinal Plants [J]. Biotechnology Bulletin, 2025, 41(9): 22-31. |
| [2] | LIU Jian-guo, LIU Ge-er, GUO Ying-xin, WANG Bin, WANG Yu-kun, LU Jin-feng, HUANG Wen-ting, ZHU Yun-na. Integrate Transcriptomic and Metabolomic Analysis of Fruits Quality Differences between ‘Guiyou No. 1’ and ‘Shatianyou’ Pomelo (Citrus maxima) [J]. Biotechnology Bulletin, 2025, 41(9): 168-181. |
| [3] | JIANG Tian-wei, MA Pei-jie, LI Ya-jiao, CHEN Cai-jun, LIU Xiao-xia, WANG Xiao-li. Metabolic Response Analysis of Brachypodium distachyon to Photoperiods [J]. Biotechnology Bulletin, 2025, 41(7): 237-247. |
| [4] | HAN Le-le, SONG Wen-di, BIAN Jia-shen, LI Yang, YANG Shuang-sheng, CHEN Zi-yi, LI Xiao-wei. Revealing the Flavonoid Biosynthesis of Soybean GmERD15c under Salt Stress by Combined Analysis of Transcriptome and Metabolome [J]. Biotechnology Bulletin, 2024, 40(10): 243-252. |
| [5] | JIANG Yu-shan, LAN Qian, WANG Fang, JIANG Liang, PEI Cheng-cheng. Characterization of a Quinoa Mutant Affecting Tyrosine Metabolism [J]. Biotechnology Bulletin, 2024, 40(10): 253-261. |
| [6] | HE Shi-yu, ZENG Zhong-da, LI Bo-yan. Application Progress of Spatially Resolved Metabolomics in Disease Diagnosis Research [J]. Biotechnology Bulletin, 2024, 40(1): 145-159. |
| [7] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
| [8] | HAN Hua-rui, YANG Yu-lu, MEN Yi-han, HAN Shang-ling, HAN Yuan-huai, HUO Yi-qiong, HOU Si-yu. SiYABBYs Involved in Rhamnoside Biosynthesis During the Flower Development of Setaria italica, Based on Metabolomics [J]. Biotechnology Bulletin, 2023, 39(6): 189-198. |
| [9] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
| [10] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
| [11] | YANG Yu-ping, ZHANG Xia, WANG Chong-chong, WANG Xiao-yan. Study on Urine Metabolomics in Rats of Different Ages [J]. Biotechnology Bulletin, 2022, 38(2): 166-172. |
| [12] | WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening [J]. Biotechnology Bulletin, 2022, 38(1): 311-318. |
| [13] | ZHANG Feng, CHEN Wei. Research Progress of Metabolomics in Plant Stress Biology [J]. Biotechnology Bulletin, 2021, 37(8): 1-11. |
| [14] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
| [15] | YIN Zhi-bin, HUANG Wen-jie, WU Xin-zhou, YAN Shi-juan. Spatially Resolved Metabolomics:Progress and Challenges [J]. Biotechnology Bulletin, 2021, 37(1): 32-51. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||