[1] JV G. Business management for biodiesel producers[R]. NREL Technical Report, 2004, NREL/SR-51036342. [2] 童牧, 周志刚. 新一代生物柴油原料— 微藻[J]. 农业工程技 术( 新能源产业), 2009(5): 19-26. [3] Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters[J]. J Biotechnol, 2006, 126(4): 499-507. [4] Lin J, Shen H, Tan H, et al. Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients[J]. J Biotechnol, 2011, 152(4): 184-188. [5] Ratledge C, Cohen Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?[J]. Lipid Technol, 2008, 20(7): 155-160. [6] Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms[J]. Renew Energ, 2009, 34(1): 1-5. [7] Papanikolaou S, Chevalot I, Komaitis M, et al. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures[J]. Appl Microbiol Biotechnol,2002, 58(3): 308-312. [8] Zhu LY, Zong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation[J].Bioresour Technol, 2008, 99(16): 7881-7885. [9] Kaur P, Worgan JT. Lipid production by Aspergillus oryzae from starch substrates[J]. Appl Microbiol Biotechnol, 1982, 16(2): 126-130. [10] Ratledge C, Wynn JP. Advances in applied microbiology[M]. 1st editon. Calif: Academic Press, 2002: 1-44. [11] Alvarez HM, Steinbuchel A. Triacylglycerols in prokaryotic microorganisms[J]. Appl Microbiol Biotechnol, 2002, 60(4): 367-376. [12] Lee JY, Yoo C, Jun SY, et al. Comparison of several methods for effective lipid extraction from microalgae[J]. Microbiol Biotechnol, 2010, 101(Suppl 1): S75-S77. [13] Mendes-Pinto M, Raposo M, Bowen J, et al. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bioavailability [J]. J Appl Phycol, 2001, 13(1): 19-24. [14] Moreau R, Hicks K. The composition of corn oil obtained by the alcohol extraction of ground corn[J]. J Am Oil Chem Soc, 2005,82(11): 809-815. [15] Moreau R, Powell M, Singh V. Pressurized liquid extraction of polar and nonpolar lipids in corn and oats with hexane, methylene chloride, isopropanol, and ethanol[J]. J Am Oil Chem Soc, 2003,80(11): 1063-1067. [16] Halim R, Gladman B, Danquah MK, et al. Oil extraction from microalgae for biodiesel production[J]. Bioresour Technol, 2011,102(1): 178-185. [17] Izard J, Limberger RJ. Rapid screening method for quantitation of bacterial cell lipids from whole cells[J]. J Microbiol Methods,2003, 55(2): 411-418. [18] Wang J, Li R, Lu D, et al A quick isolation method for mutants with high lipid yield in oleaginous yeast[J]. World J Microbiol Biotechnol, 2009, 25(5): 921-925. [19] Kimura K, Yamaoka M, Kamisaka Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence[J]. J Microbiol Methods, 2004, 56(3): 331-338. [20] Chen W, Zhang C, Song L, et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae[J].J Microbiol Methods, 2009, 77(1): 41-47. [21] Montero MF, Aristizábal M, Reina GG. Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting[J]. J Appl Phycol,2010(1): 1-5. [22] Shin HY, Lee JY, Kim EJ, et al. Rapid quantification of lipids in Acremonium chrysogenum using Oil Red O[J]. Curr Microbiol,2011, 62(3): 1023-1027. [23] Peng X, Chen H. Rapid estimation of single cell oil content of solid-state fermented mass using near-infrared spectroscopy[J].Bioresour Technol, 2008, 99(18): 8869-8872. [24] Kamisaka Y, Noda N, Tomita N, et al. Identification of genes a f f e c tin g l i pid con t e n t u si n g t r a n sp o son m u t a g e nes i s i n Saccharomyces cerevisiae[J]. Biosci Biotechnol Biochem, 2006,70(3): 646-653. [25] 宋安东, 刘玉博, 谢慧, 等. 利用转座标签mTn-lacZ/leu2 插入 突变发酵性丝孢酵母2.1368-Leu 筛选高效产油突变株[J].生物工程学报, 2011, 27(3): 468-474. [26] Davis MS, Solbiati J, Cronan JE, et al. Overproduction of acetyl- CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli[J]. J Biol Chem, 2000, 275(37): 28593- 28598. [27] Klaus D, Ohlrogge JB, Neuhaus HE, et al. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase[J].Planta, 2004, 219(3): 389-396. [28] Bouvier-Nave P, Benveniste P, Oelkers P, et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase[J]. Eur J Biochem, 2000, 267(1): 85-96. [29] Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabol ism in y ea st s and its impact o n bio techno logic al processes[J]. Appl Microbiol Biotechnol, 2011, 90(4): 1193- 1206. [30] Courchesne NM, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches[J]. J Biotechnol, 2009, 141(2): 31-41. [31] Beopoulos A, Mrozova Z, Thevenieau F, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica[J]. Appl Environ Microbiol, 2008, 74(24): 7779-7789. [32] Dulermo T, Nicaud JM. Involvement of the G3P shuttle and betaoxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng, 2011, 13: [J] (35) 482-491. [33] Rangasamy D, Ratledge C. Genetic enhancement of fatty acid synthesis by targeting rat liver ATP: Citrate lyase into plastids of tobacco[J]. Plant Physiol, 2000, 122(4): 1231-1238. [34] Zhang Y, Adams IP, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation [J]. Microbiology, 2007, 153(7): 2013-2025. [35] Papanikolaou S, Sarantou S, Komaitis M, et al. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media[J]. J Appl Microbiol,2004, 97(4): 867-875. [36] 李永红, 刘波, 赵宗保, 等. 圆红冬孢酵母菌发酵产油脂培养 基及发酵条件的优化研究[J]. 生物工程学报, 2006, 22(4): 650-656. [37] Wu S, Zhao X, Shen H, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions[J]. Bioresour Technol, 2011, 102(2): 1803-1807. [38] Zhang G, French WT, Hernandez RE, et al. Microbial lipid production as biodiesel feedstock from N-acetylglucosamine by oleaginous microorganisms[J]. J Chem Technol Biotechnol, 2011, 86(5): 642-650. [39] Zhao CH, Cui W, Liu XY, et al. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials[J]. Metab Eng, 2010, 12(6): 510-517. [40] Liang Y, Cui Y, Trushenski J, et al. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation[J].Bioresour Technol, 2010. 101(19): 7581-7586. [41] 林金涛, 沈宏伟, 张泽会, 等. 圆红冬孢酵母两阶段培养法生 产微生物油脂[J]. 生物工程学报, 2010, 4(07): 997-1002. [42] Cheirsilp B, Suwannarat W, Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock[J]. N Biotechnol, 2011, 28(4): 362-368. [43] 苗金鑫, 薛飞燕, 张栩, 等. 粘红酵母和钝顶螺旋藻混合培养 生产微生物油脂培养基优化[J]. 生物加工过程, 2007(3): 27-31. [44] Dunahay T, Jarvis E, Dais S, et al. Manipulation of microalgal lipid production using genetic engineering[J]. Appl Biochem Biotechnol, 1996, 57(1): 223-231. |