[1] Hayakawa T, Otake N, Yonehara H, et al. Isolation and characteriza-tion of plasmids from Streptomyces[J]. J Antibiot, 1979, 32(12):1348-1350.
[2] Kinashi H. Giant linear plasmids in Streptomyces:a treasure trove of antibiotic biosynthetic clusters[J]. J Antibiot, 2011, 64(1):19-25.
[3] Plasterk RH, Simon MI, Barbour AG. Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii[J]. Nature, 1985, 318(257-263):257-263.
[4] Dib JR, Wagenknecht M, Hill RT, et al. First report of linear megaplasmids in the genus Micrococcus[J]. Plasmid, 2010, 63(1):40-45.
[5] Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation[J]. Nat Rev Microbiol, 2012, 10(11):755-765.
[6] Meinhardt F, Schaffrath R, Larsen M. Microbial linear plasmids[J]. Appl Microbiol Biotechnol, 1997, 47(4):329-336.
[7] Chen CW, Huang CH, Lee HH, et al. Once the circle has been broken dynamics and evolution of Streptomyces chromosomes[J]. Trends Genet, 2002, 18(10):522-529.
[8] Zhang R, Xia H, Guo P, et al. Variation in the replication loci of Streptomyces linear plasmids[J]. FEMS Microbiol Lett, 2009, 290(2):209-216.
[9] Zhang R, Peng S, Qin Z. Two internal origins of replication in Streptomyces linear plasmid pFRL1[J]. Appl Environ Microbiol, 2010, 76(17):5676-5683.
[10] Sernova NV, Gelfand MS. Identification of replication origins in prokaryotic genomes[J]. Brief Bioinform, 2008, 9(5):376-391.
[11] Grigoriev A. Analyzing genomes with cumulative skew diagra-ms[J]. Nucleic Acids Res, 1998, 26(10):2286-2290.
[12] Casjens S. Evolution of the linear DNA replicons of the Borrelia spirochetes[J]. Curr Opin Microbiol, 1999, 2:529-534.
[13] Stoppel RD, Meyer M, Schlegel HG. The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca:conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria[J]. Biometals, 1995, 8(1):70-79.
[14] Casjens SR, Gilcrease EB, Huang WM, et al. The pKO2 linear plasmid prophage of Klebsiella oxytoca[J]. J Bacteriol, 2004, 186(6):1818-1832.
[15] Ravin NV. N15:the linear phage-plasmid[J]. Plasmid, 2011, 65(2):102-109.
[16] Marconi RT, Casjens S, Munderloh UG, et al. Analysis of linear plasmid dimers in Borrelia burgdorferi sensu lato isolates:implications concerning the potential mechanism of linear plasmid replication[J]. J Bacteriol, 1996, 178(11):3357-3361.
[17] Rybchin VN, Svarchevsky AN. The plasmid prophage N15:a linear DNA with covalently closed ends[J]. Mol Microbiol, 1999, 33(5):895-903.
[18] Ravin NV, Strakhova TS, Kuprianov VV. The protelomerase of the phage-plasmid N15 is responsible for its maintenance in linear form[J]. J Mol Biol, 2001, 312(5):899-906.
[19] Huang WM, Robertson M, Aron J, et al. Telomere exchange between linear replicons of Borrelia burgdorferi[J]. J Bacteriol, 2004, 186(13):4134-4141.
[20] Chang PC, Cohen SN. Bidirectional replication from an internal origin in a linear Streptomyces plasmid[J]. Science, 1994, 265, 952-954.
[21] Chang PC, Kim ES, Cohen SN. Streptomyces linear plasmids that contain a phage-like, centrally located, replication origin[J]. Mol Microbiol, 1996, 22(5):789-800.
[22] Qin Z, Cohen SN. Replication at the telomeres of the Streptomyces linear plasmid pSLA2[J]. Mol Microbiol, 1998, 28(5):893-903.
[23] Hiratsu K, Mochizuki S, Kinashi H. Cloning and analysis of the replication origin and the telomeres of the large linear plasmid pS-LA2-L in Streptomyces rochei[J]. Mol Gen Genet, 2000, 263(6):1015-1021.
[24] Huang CH, Tsai HH, Tsay YG, et al. The telomere system of the Streptomyces linear plasmid SCP1 represents a novel class[J]. Mol Microbiol, 2007, 63(6):1710-1718.
[25] Yang CC, Huang CH, Li CY, et al. The terminal proteins of linear Streptomyces chromosomes and plasmids:a novel class of replication priming proteins[J]. Mol Microbiol, 2002, 43(2):297-305.
[26] 肖湘, 周秀芬, 邓子新. 线性质粒——链霉菌基础生物学研究的一个新热点[J]. 国外医药抗生素分册, 1999, 20(2):49-53.
[27] Baker S, Hardy J, Sanderson KE, et al. A novel linear plasmid mediates flagellar variation in Salmonella Typhi[J]. PLoS Pathog, 2007, 3:e59.
[28] Baker S, Holt K, Whitehead S, et al. A linear plasmid truncation induces unidirectional flagellar phase change in H:z66 positive Salmonella Typhi[J]. Mol Microbiol, 2007, 66:1207-1218.
[29] Xu S, Zhang H, Sheng X, et al. Transcriptional expression of fljB:z66, a flagellin gene located on a novel linear plasmid of Salmonella enterica serovar Typhi under environmental stresses[J]. New Microbiol, 2008, 31:241-247.
[30] Xu S, Zou X, Sheng X, et al. Expression of fljB:z66 on a novel linear plasmid of salmonella enterica serovar Typhi is dependent on FliA and FlhDC and regulated by OmpR[J]. Braz J Microbiol, 2010, 41:729-740.
[31] Zou X, Huang X, Xu S, et al. Identification of fljA located on a linear plasmid as a repressor gene of fliC in Salmonella enterica serovar Typhi[J]. Microbiol Immunol, 2009, 53:191-197.
[32] Zhang H, Ni B, Zhao X, et al. Fis is essential for the stability of linear plasmid pBSSB1 and affects the motility of Salmonella enterica serovar Typhi[J]. PLoS One, 2012, 7:e37462.
[33] Bao K, Cohen SN. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication[J]. Genes Dev, 2003, 17:774-785. |