Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (5): 45-51.
• Technology and methods • Previous Articles Next Articles
Lei Xiuqing Li Li Huang Jianzhong
Received:
2013-10-16
Online:
2014-05-23
Published:
2014-05-24
Lei Xiuqing, Li Li, Huang Jianzhong. Research Progress of Improving the Actinomycetes Secondary Metabolite Production Method[J]. Biotechnology Bulletin, 2014, 0(5): 45-51.
[1] Page MG. Antibiotic discovery and development[M]. Springer, 2012:79-117. [2] 李力, 贺新义, 邓子新. Streptoverticillium rimofaciens ZJU5119提取液中米多霉素及其衍生物的分析[J]. 上海交通大学学报, 2009(1):1-4. [3] Park CN, Lee JM, Lee D, et al. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea[J]. J Microbiol Biotechnol, 2008, 18(5):880-884. [4] Robbel L, Marahiel MA. Daptomycin, a bacterial lipopeptide synthe-sized by a nonribosomal machinery[J]. Journal of Biological Chemistry, 2010, 285(36):27501-27508. [5] 亓芳, 王振东, 刘霆. 纳他霉素及其生产菌育种研究进展[J]. 生物技术通报, 2010(9):42-47. [6] Wohlleben W, Mast Y, Muth G, et al. Synthetic Biology of secondary metabolite biosynthesis in actinomycetes:Engineering precursor supply as a way to optimize antibiotic production[J]. FEBS Letters, 2012, 586(15):2171-2176. [7] 陈路劼, 赵薇, 连云阳. 聚酮合酶与药物筛选的研究进展[J]. 中国抗生素杂志, 2012, 37(9):655-661. [8] 段月娇, 薛超友, 卢文玉. 异源表达聚酮类化合物前体的研究进展[J]. 中国生物工程杂志, 2012, 32(11):107-114. [9] Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms[J]. Curr Opin Chem Biol, 2003, 7(2):285-295. [10] Chen Y, Smanski MJ, Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation[J]. Appl Microbiol Biotechnol, 2010, 86(1):19-25. [11] Hertweck C, Luzhetskyy A, Rebets Y, et al. Type II polyketide synthases:gaining a deeper insight into enzymatic teamwork[J]. Natural Product Reports, 2007, 24(1):162-190. [12] Watanabe K, Praseuth AP, Wang CC. A comprehensive and engag-ing overview of the type III family of polyketide synthases[J]. Curr Opin Chemi Biol, 2007, 11(3):279-286. [13] Chiang YM, Chang SL, Oakley BR, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Current Opinion in Chemical Biology, 2011, 15(1):137-143. [14] Laureti L, Song LJ, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proceedings of the National Academy of Sciences, 2011, 108(15):6258-6263. [15] Ryu YG, Butler MJ, Chater KF, et al. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor[J]. Applied and Environmental Microbiology, 2006, 72(11):7132-7139. [16] 白林泉, 邓子新. 微生物次级代谢产物生物合成基因簇与药物创新[J]. 中国抗生素杂志, 2006, 31(2):80-86. [17] Antón N, Mendes MV, Martin JF, et al. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. J Bacteriol, 2004, 186(9):2567-2575. [18] Antón N, Santos-Aberturas J, Mendes MV, et al. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. Microbiology, 2007, 153(9):3174-3183. [19] Jang BY, Hwang YI, Choi SU. Effects of pimM and pimR on the Increase of Natamycin Production in Streptomyces natalensis[J]. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(1):141-144. [20] Santos-Aberturas J, Vicente CM, Payero TD, et al. Hierarchical control on polyene macrolide biosynthesis:PimR modulates pimaricin production via the PAS-LuxR transcriptional activator pimM[J]. PloS One, 2012, 7(6):1-10. [21] Karray F, Darbon E, Oestreicher N, et al. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens[J]. Microbiology, 2007, 153(12):4111-4122. [22] Juguet M, Lautru S, Francou FX, et al. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens[J]. Chemistry & Biology, 2009, 16(4):421-431. [23] Nicolaou KC, Tria GS, Edmonds DJ. Total synthesis of platencin[J]. Angewandte Chemie, 2008, 120(9):1804-1807. [24] Wang J, Kodali S, Lee SH, et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties[J]. Proc Nat Acad Sci USA, 2007, 104(18):7612-7616. [25] Smanski MJ, Peterson RM, Rajski SR, et al. Engineered Streptomy-ces platensis strains that overproduce antibiotics platensimycin and platencin[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(4):1299-1304. [26] Liu W, Christenson SD, Standage S, et al. Biosynthesis of the enediyne antitumor antibiotic C-1027[J]. Science, 2002, 297(5584):1170-1173. [27] Wang L, Hu Y, Zhang Y, et al. Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globispo-rus C-1027[J]. BMC Microbiology, 2009, 9(1):1-14. [28] Chen YH, Yin M, Horsman GP, et al. Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus[J]. Journal of Natural Products, 2011, 74(3):420-424. [29] Yanai K, Murakami T, Bibb M. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus[J]. Proceedings of the National Academy of Sciences, 2006, 103(25):9661-9666. [30] Murakami T, Burian J, Yanai K, et al. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor[J]. Proceedings of the National Academy of Sciences, 2011, 108(38):16020-16025. [31] Liao G, Li J, Li L, et al. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production[J]. Microbial Cell Factories, 2009, 9:1-6. [32] Yu L, Cao N, Wang L, et al. Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes[J]. Enzyme and Microbial Technology, 2012, 50(6-7):318-324. [33] Ochi K, Hosaka T. New strategies for drug discovery:activation of silent or weakly expressed microbial gene clusters[J]. Applied Microbiology and Biotechnology, 2013, 97(1):87-98. [34] Hu H, Zhang Q, Ochi K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene encoding the RNA polymerase beta subunit of Streptomyces lividans[J]. Journal of Bacteriology, 2002, 184(14):3984-3891. [35] Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by rpsL(encoding ribosomal protein S12)mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2)[J]. Journal of Bacteriology, 1996, 178(24):7276-7284. [36] Wang G, Inaoka T, Okamoto S, et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction[J]. Antimicrob Agents Chemothera, 2009, 53(3):1019-1026. [37] Hu HF, Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant muta-tions[J]. App Environ Microbiol, 2001, 67(4):1885-1892. [38] Wang G, Hosaka T, Ochi K. Dramatic activation of antibiotic prod-uction in Streptomyces coelicolor by cumulative drug resistance mut-ations[J]. Appl Environ Microbiol, 2008, 74(9):2834-2840. [39] Li L, Wu J, Deng ZX, et al. Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-producing strain for ease of genetic manipulation[J]. Applied and Environmental Microbiology, 2013, 79(7):2349-2357. [40] Gomez-Escribano JP, Bibb MJ. Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor:from genome mining to manipulation of biosynthetic pathways[J]. J Industrial Microbiol Biotechnol, 2014, 41(2):425-431. [41] Komatsu M, Komaetu K, Koiwai H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites[J]. ACS Synthetic Biology, 2013, 2(7):384-396. [42] Gomez-Escribano JP, Song LJ, Fox DJ, et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145[J]. Chemical Science, 2012, 3(9):2716-2720. [43] Gomez-Escribano JP, Bibb MJ. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters[J]. Microbial Biotechnology, 2011, 4(2):207-215. [44] Zhou M, Jing XY, Xie PF, et al. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor[J]. FEMS Microbiology Letters, 2012, 333(2):169-179. [45] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism[J]. PNASUSA, 2010, 107(6):2646-2651. [46] Komatsu M, Tsuda M, Omura S, et al. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol[J]. PNAS, 2008, 105(21):7422-7427. [47] Li L, Xu ZN, Xu XY, et al. The mildiomycin biosynthesis:initial steps for sequential generation of 5-hydroxymethylcytidine 5'-monophosphate and 5-hydroxymethylcytosine in Streptoverticillium rimofaciens ZJU[J]. Chem Bio Chem, 2008, 9(8):1286-1294. [48] Wu J, Li L, Deng ZX, et al. Analysis of the mildiomycin biosynthesis gene cluster in Streptoverticillum remofaciens ZJU5119 and characterization of MilC, a hydroxymethyl cytosyl-glucuronic acid synthase[J]. Chem Bio Chem, 2012, 13(11):1613-1621. [49] 李力, 贺新义, 邓子新. 米多霉素生物合成机理的研究[D]. 上海:上海交通大学, 2008. [50] Wong FT, Khosla C. Combinatorial biosynthesis of polyketides—a perspective[J]. Curr Opin Chem Biol, 2012, 16(1):117-123. |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[3] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[4] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[5] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[6] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[7] | NIU Xin, ZHANG Ying, WANG Mao-jun, LIU Wen-long, LU Fu-ping, LI Yu. Effects of Different Integration Sites on the Expression of Exogenous Alkaline Protease in Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2022, 38(4): 253-260. |
[8] | MIAO Yu-jiao, ZHU Long-jiao, XU Wen-tao. Novel Matrixes for Mass Spectrometry Imaging and Research Progress of It in Analyzing Biological Samples [J]. Biotechnology Bulletin, 2022, 38(12): 156-167. |
[9] | WANG Bo-ya, JIANG Yong, HUANG Yan, CAO Ying, HU Shang-lian. Cloning and Functional Analysis of BeCesA4 in Bambusa emeiensis [J]. Biotechnology Bulletin, 2022, 38(11): 185-193. |
[10] | WANG Xiao-tao, ZOU Hang, WU Yi, XIANG Shen-wei, LV Hua, LIU Chao-lan, LIN Jia-fu, WANG Xin-rong, CHU Yi-wen, SONG Tao. Heterologous Expression and Enzymatic Properties Analysis of Novel β-agarase Aga2 from Paraglaciecola hydrolytica [J]. Biotechnology Bulletin, 2022, 38(11): 258-268. |
[11] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[12] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[13] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[14] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[15] | NI Chun-hui, LI Hui-xia, LI Wen-hao, LIU Yong-gang, XU Xue-fen, HAN Bian. Comparison of Molecular Characteristics of the Hybrid Progenies from Different Haplotypes of Ditylenchus destructor [J]. Biotechnology Bulletin, 2021, 37(7): 118-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||