[1] Wilson D. Endophyte-the evolution of a term, and clarification of its use and definition[J]. Oikos, 1995, 73: 274-276. [2] Azevedo JL, Maccheroni WJ, Pereira JO, et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants[J]. Electronic Journal of Biotechnology, 2000, 3: 40-65. [3] B?rschig C, Klein AM, Krauss J. Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions[J]. Journal of Plant Ecology, 2013.[online] doi: 10.1093/jpe/rtt047 [4] García-Parisi PA, Grimoldi AA, Omacini M. Endophytic fungi of grasses protect other plants from aphid herbivory[J]. Fungal Ecology, 2014, 9: 61-64. [5] Hernawati H, Wiyono S, Santoso S. Leaf endophytic fungi of chili (Capsicum annuum)and their role in the protection against Aphis gossypii(Homoptera: Aphididae)[J]. Biodiversitas, 2011, 12: 187-191. [6] Thakur A, Kaur S, Kaur A, et al. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants[J]. Environmental Entomology, 2013, 42(2):240-246. [7] Faeth SH. Are endophytic fungi defensive plant mutualists?[J]. Oikos, 2002, 98: 25-36. [8] Schardl CL, Grossman RB, Nagabhyru P, et al. Loline alkaloids: currencies of mutualism[J]. Phytochemistry, 2007, 68: 980-996. [9] Raps A, Vidal S. Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interaction[J]. Mycologia, 1998, 114: 541-547. [10] Jallow MFA, Dugassa-Gobena D, Vidal S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes[J]. Arthropod-Plant Interaction, 2008, 2: 53-62. [11] Zhang ZQ, Sun XL, Xin ZJ, et al. Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis oblique[J]. Journal of Chemical Ecology, 2013, 39: 1284-1296. [12] Visser JH. Electroantennogram responses of the Colorado beetle, Leptinotarsa decemlineata, to plant volatiles[J]. Entomologia Experimentalis et Applicata, 1979, 25: 86-97. [13] Visser JH. Leaf odor perception and olfactory orientation in the Colorado beetle[C]. In: Olfaction in the Colorado beetle at site onset of host plant selection. Ph. D. Dissertation. Univ. Wageningen, 1979: 88-85. [14] Schneider D. Plant recognition by insects: a challenge for neuro-ethological research[M] // Labeytie V, Fabres G, Lachaise D. Insect-Plant Relationships, 1986: 117-124. [15] Visser JH. Differential sensory perceptions of plant compounds by insects[M] // Hedin PA. Plant resistance to insect. ACS Symp. ser, 1983, 208: 215-230. [16] Visser JH. Host odour perception in phytophagous insects[J]. Annual Review of Entomology, 1986, 31: 121-144. [17] Hsiao TH. Feeding behavior[M] // Kerkut GA, Gilbert LI. Co mpr -ehensi ve Insec t Physi o lo gy, Bi ol che mi st ry and Pharmacology, Pergamon Press, 1985, 9: 471-512. [18] 杜永均. 大豆蚜选择寄主植物的行为生理-植物挥发性次生物质在大豆蚜, 寄主植物和自然天敌三重关系中的作用[D]. 杭州: 浙江农业大学, 1992. [19] Nottingham SF, Hardie GW, Dawson AJ, et al. Behavioral and electrophysiological responses of aphids to host and nonhost plant volatile[J]. Journal of Chemical Ecology, 1991, 17: 1231-1242. [20] Aharoni A, Giri AP, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. The Plant Cell, 2003, 15: 2884-2888. [21] Unsicker SB, Kunert G, Gershenzon J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores[J]. Current Opinion in Plant Biology, 2009, 12: 479-485. [22] Takabayashi J, Takahashi S, Dicke M, et al. Developmental stages of herbivore Pseudaletia separata affects production of herbivoreinduced synomone by corn plants[J]. Journal of Chemical Ecology, 1995, 21: 273-287. [23] Turlings TCJ, Tumlison JH, Lewis WJ. Exploitation of herbivore-induced plant odours by host-seeking parasitic wasps[J]. Science, 1990, 250: 1251-1253. [24] Turlings TCJ, Bernasconi M, Bertossa R, et al. The induction of volatile emission in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies[J]. Biological Control, 1998, 11: 122-129. [25] Mccormick AC, Irmisch S, Reinecke A, et al. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies[J]. Plant, Cell and Environment, 2014, 37(8): 1909-1923. [26] Ponzio C, Gols R, Weldegergis BT, et al. Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore[J]. Plant, Cell and Environment, 2014, 37(8):1924-1935. [27] Huang J, Schmelz EA, Alborn H, et al. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco[J]. Journal of Chemical Ecology, 2005, 31: 439-459. [28] Stein E, Molitor A, Kogel KH, et al. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1[J]. Plant and Cell Physiology, 2008, 49(11): 1747-1751. [29] Franken P, Fakhro A, Andrade-Linares DR, et al. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens[J]. Mycorrhiza, 2010, 20(3):191200. [30] Sherameti I, Tripathi S, Varma A, et al. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves[J]. Molecular Plant-Microbe Interactions, 2008, 21(6):799-807. [31] Sun C, Johnson J, Cai DG, et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein[J]. Journal of Plant Physiology, 2010, 167(12):1009-1017. [32] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3):473-497. [33] Hill TW, Kaefer E. Improved protocols for aspergillus medium: Trace elements and minimun medium salt stock solutions[J]. Fungal Genetics Newsletter, 2001, 48: 20-21. [34] Rai M, Acharya D, Singh A, et al. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial[J]. Mycorrhiza, 2001, 11(3):123-128. [35] 刘婷, 李为争, 游秀峰, 等. 常见植物挥发物对烟蚜的驱避和 抑制定殖活性[J]. 中国烟草学报, 2013, 2: 77-84. [36] Yang YC, Lee EH, Lee HS, et al. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti[J]. Journal of the American Mosquito Control Association, 2004, 20: 169-149. [37] Park BS, Choi WS, Kim JH, et al. Monoterpenes from thyme (Thymus vulgaris)as potential mosquito repellents[J]. Journal of the American Mosquito Control Association, 2005, 21: 80-83. [38] Jaenson TG, Palsson K, Borg-Karlsom AK. Evaluation of extracts and oils of mosquito(Diptera: Culicidae)repellent plants from Sweden and Guinea-Bissau[J]. Journal of Medical Entomology, 2006, 43: 113-119. [39] Gillij YG, Gleiser RM, Zygadlo JA. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina[J]. Bioresource Technology, 2005, 99: 2507-2515. [40] Bruce TJA, Birkett MA, Blande J, et al. Response of economically important aphids to components of Hemizygia petiolata essential oil[J]. Pest Management Science, 2005, 61: 1115-1121. [41] 韩招久, 郑卫青, 姜志宽, 等. 萜类蚜虫拒食剂的筛选研究[J]. 江西农业大学学报, 2010, 32(1):78-84. [42] Barazani O, Benderoth M, Groten K, et al. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuate[J]. Oecologia, 2005, 146: 234-243. |