Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (3): 25-34.doi: 10.13560/j.cnki.biotech.bull.1985.2015.04.004
Previous Articles Next Articles
Yan Tao Xi Hongsheng
Received:
2014-08-09
Online:
2015-03-16
Published:
2015-03-16
Yan Tao, Xi Hongsheng. Progresses of Microbial Synthesis of Poly-γ-Glutamic Acid of Related Genes,Synthesis Mechanism and Fermentation[J]. Biotechnology Bulletin, 2015, 31(3): 25-34.
[1] 任尚美, 马霞, 王海波. γ-聚谷氨酸的发酵条件优化及其初步表征[J]. 中国酿造, 2008, 27(19):43-46. [2] 赵紫华, 马霞, 刘蕊. 高产γ-聚谷氨酸菌株的选育与鉴定[J]. 中国酿造, 2007, 26(7):32-34. [3] 郑重, 吴剑光, 邱乐泉. 微生物聚谷氨酸(γ-PGA)合成酶及合成机理的研究进展[J]. 生物技术通报, 2010(6):52-56. [4] Negus D, Burton J, Sweed A, et al. Poly-γ-d-glutamic acid capsule interferes with lytic infection of Bacillus anthracis by B. anthracis-specific bacteriophages[J]. Applied and Environmental Microbiology, 2013, 79(2):714-717. [5] 王浩, 杨丽萍, 乔君. γ-聚谷氨酸的研究进展[J]. 山东食品发酵, 2011, 4:015. [6] Hidetoshi K, Toshio M, Kazumichi U, et al. Production of poly(γ-glutamic acid)by Bacillus subtilis F-2-01. Bioscience, Biotechnology, and Biochemistry, 1993, 57(7):1212-1213. [7] Cao M, Song C, Jin Y, et al. Synthesis of poly(γ-glutamic acid)and heterologous expression of pgs BCA genes[J]. Journal of Molecular Catalysis B:Enzymatic, 2010, 67(1):111-116. [8] Makino S, Uchida I, Terakado N. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis[J]. Journal of Bacteriology, 1989, 171(2):722-730. [9] Urushibata Y, Tokuyama S, Tahara Y. Difference in transcription levels of cap genes for γ-poly glutamic acid production between Bacillus subtilis IFO16449 and Marburg 168[J]. Journal of Bioscience and Bioengineering, 2002, 93(2):252-254. [10] Ashiuchi M, Soda K, Misono H. A poly-γ-glutamate synthetic system of Bacillus subtilis IFO3336:gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells[J]. Biochemical Biophysical Research Communications, 1999, 263(1):6-12. [11] Cao M, Geng W, Liu L, et al. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgs BCA genes[J]. Bioresource Technology, 2011, 102(5):4251-4257. [12] Urushibata Y, Tokuyama S, Tahara Y. Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production[J]. Journal of bacteriology, 2002, 184(2):337-343. [13] Ashiuchi M, Nawa C, Kamei T, et al. Physiological and biochemical characteristics of poly-γ-glutamate synthetase complex of Bacillus subtilis[J]. European Journal of Biochemistry, 2001, 268(20):5321-5328. [14] 石峰, 徐志南, 岑沛霖. 利用枯草芽抱杆菌制备 γ-聚谷氨酸[C]. 中国资源生物技术与糖工程学术研讨会论文集, 2005. [15] 马婕, 王丹, 李强. 基因工程大肠杆菌合成 γ-聚谷氨酸[J]. 过程工程学报, 2009, 9(4):792-795. [16] Xu Q, Sudek S, McMullan D, et al. Structural basis of murein peptide specificity of a γ-D-glutamyl-L-diamino acid endopeptidase[J]. Structure, 2009, 17(2):303-313. [17] 王计伟, 施庆珊, 欧阳友生. 地衣芽胞杆菌ATCC9945A中γ-聚谷氨酸降解酶基因的克隆、表达及降解性能鉴定[J]. 生物技术, 2012, 22(1):13-17. [18] Wu Q, Xu H, Xu L, et al. Biosynthesis of poly(γ-glutamic acid)in Bacillus subtilis NX-2:regulation of stereochemical composition of poly(γ-glutamic acid)[J]. Process Biochemistry, 2006, 41(7):1650-1655. [19] Cromwick AM, Gross RA. Investigation by NMR of metabolic routes to bacterial γ-poly(glutamic acid)using 13C-labeled citrate and glutamate as media carbon sources[J]. Canadian Journal of Microbiology, 1995, 41(10):902-909. [20] Ogawa Y, Yamaguchi TF, Yuasa K, et al. Efficient production of γ-polyglutamic acid by Bacillus subtilis(natto)in Jar fermenters[J]. Biosci Biotech Bioch, 1997, 61:1684-1687. [21] Troy F. Chemistry and biosynthesis of poly(gamma-d-glutamyl)capsule in Bacillus licheniformis. 1. properties of membrane-mediated biosynthetic reaction[J]. Journal of Biological Chemistry, 1973, 248(1):305-315. [22] Candela T, Fout A. Poly-gamma-glutamate in bacteria[J]. Molecular Microbiology, 2006, 60(5):1091-1098. [23] Mader U, Antelmann H, Buder T. Bacillus subtilis functional genomics:genome-wide analysis of the DegS-DegU regulon by transcriptomics and protiomics[J]. Molecular Genetics and Genomics, 2002, 268(4):455-467. [24] Stanley N, Lazazzera B. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acid production and biofilm formation[J]. Molecular Microbiology, 2005, 57(4):1143-1158. [25] Kimura K, Tran L. Expression of the pgs B encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis(natto)[J]. Bioscience Biotechnology and Biochemistry, 2009, 73(5):1149-1155. [26] Cao Mf, Geng W, Li L, et al. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgs BCA genes[J]. Bioresource Technology, 2011, 102(5):4251-4257. [27] Cheng C, Yoshihiro A, Tokujiro A. Production of γ-polyglutamic acid by Bacillus licheniformis A35 under denitrifying conditions[J]. Agricultural and Biological Chemistry, 1989, 53(9):2369-2375. [28] Ishwar B, Rekha S. Poly(glutamic acid)-an emerging biopolymer of commercial interest[J]. Bioresource Technology, 2011, 102(10):5551-5561. [29] Jae-Hoon J, Jin-Nam K, Young-Jung W, et al. The statistically optimized production of poly(γ-glutamic acid)by batch fermentation of a newly isolated Bacillus subtilis RKY3[J]. Bioresource Technology, 2010, 101(12):4533-4539. [30] Lung SI, Wu PJ, Jen SC. Microbial production of a poly(γ-glutamic acid)derivative by Bacillus subtilis[J]. Process Biochemistry, 2005, 40(8):2827-2832. [31] Masao K, Atsuo G. Biosynthesis of poly(γ-glutamic acid)from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335[J]. Applied Microbiology and Biotechnology, 1994, 40(6):867-872. [32] Yoshihito I, Takeshi T, Tetsuo O, et al. Glutamic acid independent production of poly(γ-glutamic acid)by Bacillus subtilis TAM-4[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(8):1239-1242. [33] 金映红, 刘静, 刘莉. 利用 Bacillus licheniformis NK-03 合成聚谷氨酸及其合成酶基因 pgs BCA 的克隆[J]. 南开大学学报:自然科学版, 2008, 41(3):57-63. [34] 疏秀林, 施庆珊, 冯静. 一株非谷氨酸依赖型聚 γ-谷氨酸高产菌株的鉴定与诱变育种[J]. 微生物学通报, 2009, 36(5):705-710. [35] Su Y, Li X, Liu Q, et al. Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene(vgb)in Bacillus subtilis[J]. Bioresource Technology, 2010, 101(12):4733-4736. [36] Yeh CM, Wang JP, Lo S. Chromosomal integration of a synthetic expression control sequence achieves poly-γ-glutamate production in a Bacillus subtilis strain[J]. Biotechnology Progress, 2010, 26(4):1001-1007. [37] 杨革, 陈坚, 曲音波. 金属离子对地衣芽孢杆菌合成多聚谷氨酸的影响[J]. 生物工程学报, 2001, 17(6):706-709. [38] Hong X, Min J, Hui L, et al. Efficient production of poly(γ-glutamic acid)by newly isolated Bacillus subtilis NX-2[J]. Process Biochemistry, 2005, 40(2):519-523. [39] Young HK, Richard AG. Effects of glucose and glycerol on γ-poly(glutamic acid)formation by Bacillus licheniformis ATCC 9945a[J]. Biotechnology and Bioengineering, 1998, 57(4):430-437. [40] Yao J, Xu H, Shi N, et al. Analysis of carbon metabolism and improvement of γ-polygiutamic acid production from Bacillus subtilis NX-2[J]. Applied Biochemistry and Biotechnology, 2010, 160(8):2332-2341. [41] Hwan DJ, Nam CH, Yup LS. Efficient recovery of γ-poly(glutamic acid)from highly viscous culture broth[J]. Biotechnology and Bioengineering, 2001, 76(3):219-224. [42] 冯志彬, 程仕伟, 缪静. γ-聚谷氨酸生产菌的选育及培养条件研究[J]. 生物加工过程, 2010(1):40-44. [43] 阮文辉, 杨家志, 姚俊. γ-聚谷氨酸合成菌株的筛选与优化培养[J]. 中国酿造, 2011(5):66-69. [44] Qiao C, Zhang S, Li Z, et al. improving poly-(γ-glutamic acid)production and reducing impurities in fermentation broth by medi-um optimization using Bacillus licheniformis CGMCC3336[J]. Journal of Biobased Materials and Bioenergy, 2013, 7(3):390-394. [45] Andrew R, Argyrios M. Optimization of cell growth and poly(glutamic acid)production in batch fermentation by Bacillus subtilis[J]. Biotechnology Letters, 2003, 25(6):465-468. [46] Anne MC, Richard AG. Effects of manganese on Bacillus licheniformis ATCC 9945A physiology and γ-poly(glutamic acid)formation[J]. International Journal of Biological Macromolecules, 1995, 17(5):259-267. [47] Gooding EA, Sharma S, Petty SA, et al. pH-dependent helix folding dynamics of poly-glutamic acid[J]. Chemical Physics, 2013, 422:115-123. [48] Chen X, Li QY, Dai J, et al. Solid state fermentation for chicken manure regenerative feed containing poly-γ-glutamic acid[J]. Advanced Materials Research, 2013, 807:1176-1180. [49] Zongqi X, Xiaohai F, Dan Z, et al. Enhanced poly(γ-glutamic acid)fermentation by Bacillus subtilis NX-2 immobilized in an aerobic plant fibrous-bed bioreactor[J]. Bioresource Technology, 2014, 155:8-14. [50] Zhang D, Feng X, Zhou Z, et al. Economical production of poly(γ-glutamic acid)using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2[J]. Bioresource Technology, 2012, 114:583-588. [51] Yong X, Raza W, Yu G, et al. Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates[J]. Bioresource Technology, 2011, 102(16):7548-7554. [52] Zeng W, Li W, Shu L, et al. Non-sterilized fermentative co-production of poly(γ-glutamic acid)and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28[J]. Bioresource Technology, 2013, 142:697-700. [53] Bajaj I, Singhal R. Poly(glutamic acid)-an emerging biopolymer of commercial interest[J]. Bioresource Technology, 2011, 102(10):5551-5561. [54] 彭其安, 张西峰, 吴思方. 同源重组法构建枯草芽孢杆菌转酮酶缺失突变菌株[J]. 生物技术, 2006, 16(6):23-26. [55] 严涛, 赵锦芳, 高文慧. 大肠杆菌工程菌pts G基因敲除及其缺陷株混合糖同型乙醇发酵[J]. 生物工程学报, 2013, 29(7):937-945. [56] 金晶, 姚俊, 徐虹. 枯草杆菌NX-2聚谷氨酸解聚酶的克隆表达及其降解性质研究[J]. 中国生物工程杂志, 2007, 27(5):34-38. |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[3] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[4] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[5] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[6] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[7] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[8] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[9] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[10] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[11] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[12] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[13] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[14] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[15] | HE Yu-hang, HU Tao, WU Zhen, HE Yu, CHENG An-chun, CHEN Shun. Establishment of YFV17D Non-infectious Reporter Replicon and Pseudovirus Packaging System [J]. Biotechnology Bulletin, 2023, 39(8): 165-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||