Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (8): 17-23.doi: 10.13560/j.cnki.biotech.bull.1985.2015.08.003
• Review • Previous Articles Next Articles
Liu Ying, Tang Yongzheng, Gao Li
Received:
2014-12-08
Online:
2015-08-21
Published:
2015-08-22
Liu Ying, Tang Yongzheng, Gao Li. Research Progress on Invertebrates DNA Methylation[J]. Biotechnology Bulletin, 2015, 31(8): 17-23.
[1] Zemach A, McDaniel IE, Silva P, et al. Genome-wide evolutionary analysis of eukaryotic DNA methylation[J]. Science, 2010, 328:916-919. [2] Gadau J, Helmkampf M, Nygaard S, et al. The genomic impact of 100 million years of social evolution in seven ant species[J]. Trends in Genetics, 2012, 28:14-21. [3] Bestor TH. DNA methylation-evolution of a bacterial immune function into a regulator of gene-expression and genome structure in higher eukaryotes[J]. Biological Sciences Philosophical Transactions of the Royal Society of London Series B, 1990, 326: 179-187. [4] Klose RJ, Bird AP. Genomic DNA methylation:the mark and its mediators[J]. Trends in Biochemical Sciences, 2006, 31: 89-97. [5] Jurkowski TP, Meusburger M, Phalke S, et al. Human DNMT2 methylates tRNA(Asp)molecules using a DNA methyltransferase-like catalytic mechanism[J]. RNA, 2008, 14: 1663-1670. [6] Bogdanovic O, Veenstra GJC. DNA methylation and methyl-CpG binding proteins:developmental requirements and function[J]. Chromosoma, 2009, 118:549-565. [7] Collier J. Epigenetic regulation of the bacterial cell cycle[J]. Current Opinion in Microbiology, 2009, 12:722-729. [8] Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature, 2008, 452:215-219. [9] Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126:1189-1201. [10] Schaefer M, Lyko F. Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation[J]. Nature Genetics, 2010, 42: 920-921. [11] Gavery MR, Roberts SB. Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusk[J]. PeerJ, 2013, 1:e215. [12] Wang X, Wheeler D, Avery A, et al. Function and evolution of DNA methylation in Nasonia vitripennis[J]. PLoS Genetics, 2013, 9:e1003872. [13] Field LM. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer)[J]. Biochemical Journal, 2000, 349: 863-868. [14] Ono M, Swanson JJ, Field LM, et al. Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani)(Homoptera : Aphididae)[J]. Insect Biochemistry and Molecular Biology, 1999, 29: 1065-1073. [15] Walsh TK, Brisson JA, Robertson HM, et al. A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum[J]. Insect Molecular Biology, 2010, 19: 215-228. [16] Xiang H, Zhu J, Chen Q, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map[J]. Nature Biotechnology, 2010, 28:516-520. [17] Feng S, Cokus SJ, Zhang X, et al. Conservation and divergence of methylation patterning in plants and animals[J]. Proceedings of the National Academy of Science, USA, 2010, 107:8689-8694. [18] Elango N, Yi SV. DNA methylation and structural and functional bimodality of vertebrate promoters[J]. Molecular Biology Evolution, 2008, 25:1602-1608. [19] Shimizu TS, Takahashi K, Tomita M. CpG distribution patterns in methylated and non-methylated species[J]. Gene, 1997, 205:103-107. [20] Glastad KM, Hunt BG, Yi SV, et al. DNA methylation in insects:on the brink of the epigenomic era[J]. Insect Molecular Biology, 2011, 20(5):553-565. [21] Elango N, Hunt BG, Goodisman MAD, et al. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera[J], Proceedings of the National Academy of Sciences, USA, 2009, 106:11206-11211. [22] Lyko F, Foret S, Kucharski R, et al. The honey bee epigenomes:differential methylation of brain DNA in queens and workers[J]. PLoS Biology, 2010, 8:e1000506. [23] Sarda S, Zeng J, Hunt BG, et al. The evolution of invertebrate gene body methylation[J]. Molecular Biology and Evolution, 2012, 29:1907-1916. [24] Hunt BG, Brisson JA, Yi SV, et al. Functional conservation of DNA methylation in the pea aphid and the honeybee[J]. Genome Biology and Evolution, 2010, 2:719-728. [25] Kucharski R, Maleszka J, Foret S, et al. Nutritional control of reproductive status in honeybees via DNA methylation[J]. Science, 2008, 319:1827-1830. [26] Herb BR, Wolschin F, Hansen KD, et al. Reversible switching between epigenetic states in honeybee behavioral subcastes[J]. Nature Neuroscience, 2012, 15: 1371-1373. [27] Weiner SA, Galbraith DA, Adams DC, et al. A survey of DNA methylation across social insect species, life stages, and castes reveals abundant and caste-associated methylation in a primitively social wasp[J]. Naturwissenschaften, 2013, 100:795-799. [28] Bonasio R, Li Q, Lian J, et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator[J]. Current Biology, 2012, 22:1755-1764. [29] Terrapon N, Li C, Robertson HM, et al, Molecular traces of alternative social organization in a termite genome[J]. Nature Communications, 2014, 5:3636. [30] Schübeler D. Epigenetic islands in a genetic ocean[J]. Science, 2012, 338:756-757. [31] Rajasethupathy P, Antonov I, Sheridan R, et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity[J]. Cell, 2012, 149:693-707. [32] Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters[J]. Nature, 2010, 466:253-257. [33] Roberts SB, Gavery MR. Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates?[J]. Fronties in Physiology, 2012, 2:116. [34] Riviere G. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates[J]. Fronties in Physiology, 2014, 5:129. [35] Flores K, Wolschin F, Corneveaux JJ, et al. Genome-wide association between DNA methylation and alternative splicing in an invertebrate[J]. BMC Genomics, 2012, 13:480. [36] Maunakea AK, Chepelev I, Cui K, et al. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition[J]. Cell Research, 2013, 11:1-14. [37] Zwier MV, Verhulst EC, Zwahlen RD, et al. DNA methylation plays a crucial role during early Nasonia development[J]. Insect Molecular Biology, 2012, 21:129-138. [38] Jouaux A, Heude-Berthelin C, Sourdaine P, et al. Gametogenic stages in triploid oysters Crassostrea gigas:irregular locking of gonial proliferation and subsequent reproductive effort[J]. Journal of Experimental Marine Biology and Ecology, 2010, 395:162-170. [39] Riviere G, Wu G, Fellous A, et al. DNA methylation is crucial for the early development in the Oyster Crassostrea gigas[J]. Marine Biotechnology, 2013, 15:739-753. [40] Park J, Peng Z, Zeng J, et al. Comparative analyses of DNA methylation and sequence evolution using Nasonia genomes[J]. Molecular Biology and Evolution, 2011, 28:3345-3354. [41] Marais G. Biased gene conversion:implications for genome and sex evolution[J]. Trends in Genetics, 2003, 19: 330-338. [42] Riggs AD. X inactivation, differentiation, and DNA methylation[J]. Cytogenetics and Cell Genetics, 1975, 14:9-25. [43] Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development[J]. Science, 1975, 187:226-232. [44] Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences[J]. Nature, 2009, 462:315-322. [45] Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information[J]. Nature Reviews Genetics, 2010, 11: 285-296. [46] Hata K, Okano M, Lei H, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice[J]. Development, 2002, 129: 1983-1993. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[4] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[5] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[6] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[7] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[8] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[9] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[10] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[11] | LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis [J]. Biotechnology Bulletin, 2023, 39(1): 175-186. |
[12] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[13] | WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3 [J]. Biotechnology Bulletin, 2022, 38(7): 31-39. |
[14] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[15] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||