[1]康云艳, 郭世荣, 段九菊. 新型植物激素与蔬菜作物抗逆性关系研究进展[J]. 中国蔬菜, 2007, 5:39-42. [2]刘永庆. 预浸和发芽过程中番茄种子细胞核的倍性变化[J]. 植物生理学报, 1995, 21(1):15-21. [3]Franklin KA. Shade avoidance[J]. New Phytol, 2008, 179(5):930-944. [4]Bailey-Serres J, Voesenek LA. Life in the balance:a signaling network controlling survival of flooding[J]. Curr Opin Plant Biol, 2010, 13(5):489-494. [5]Skirycz A, Inzé D. More from less:plant growth under limited water[J]. Curr Opin Biotechnol, 2010, 21(2):197-203. [6]Bai MY, Shang JX, Oh E, et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nat Cell Biol, 2012, 14(8):810-817. [7]Ellen HC, Stephen G. The role of gibberellin signalling in plant responses to abiotic stress[J]. J Exp Bot, 2014, 217:67-75. [8]潘瑞炽. 植物生理学[M]. 第6版. 北京:高等教育出版社, 2008:167-280. [9]李强, 吴建民, 梁和, 等. 高等植物赤霉素生物合成及其信号转导途径[J]. 生物技术通报, 2014(10):16-22. [10]岳川, 曾建明, 曹红利, 等. 高等植物赤霉素代谢及其信号转导通路[J]. 植物生理学报, 2012, 48(2):118-128. [11]O’Neill DP, Davidson SE, Clarke VC, et al. Regulation of the gibberellin pathway by auxin and DELLA proteins[J]. Planta, 2010, 232(5):1141-1149. [12]Hirano K, Kouketu E, Katoh H, et al. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity[J]. Plant J, 2012, 71(3):443-453. [13]Achard P, Gusti A, Cheminant S, et al. Gibberellin signaling controls cell proliferation rate in Arabidopsis[J]. Curr Biol, 2009, 19(14):1188-1193. [14]Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice[J]. Proc Natl Acad Sci USA, 2008, 105(43):16814-16819. [15]Hattori Y, Nagai K, Furukawa S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258):1026-1030. [16]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice[J]. Plant Cell, 2011(23):412-427. [17]Keuskamp DH, Sasidharan R, Pierik R. Physiological regulation and functional significance of shade avoidance responses to neighbors[J]. Plant Signal Behav, 2010, 5(6):655-662. [18]Stamm P, Kumar PP. The phytohormone signal network regulating elongation growth during shade avoidance[J]. J Exp Bot, 2010, 61(11):2889-2903. [19]Rockwell NC, Su YS, Lagarias JC. Phytochrome structure and signaling mechanisms[J]. Annu Rev Plant Biol, 2006, 57:837-858. [20]Keller MM, Jaillais Y, Pedmale UV, et al. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades[J]. Plant J, 2011, 67(2):195-207. [21]Djakovic-Petrovic T, de Wit M, Voesenek LA, et al. DELLA protein function in growth responses to canopy signals[J]. Plant J, 2007, 51(1):117-126. [22]Feng SH, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451(7177):475-479. [23]潘教文, 赵术珍, 张烨. 光敏色素互作因子(PIFs)对植物生长发育的调控[J]. 山东农业科学, 2014, 46(6):150-156. [24]Skirycz A, Claeys H, De Bodt S, et al. Pause-and-stop:the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest[J]. Plant Cell, 201, 23(5):1876-1888. [25]Atwell BJ. The effect of soil compaction on wheat during early tillering[J]. New Phytol, 1990, 115(10):29-35. [26]Verelst W, Skirycz A, Inzé D. Acid act at different developmental stages to instruct the adaptation of young leavesto stress[J]. Plant Signal Behav, 2010, 5(4):473-475. [27]Dubois M, Skirycz A, Claeys H, et al. ETHYLENE RESPONSE FACTOR 6 acts as central regulator of leaf growth under water limiting conditions in Arabidopsis thaliana[J]. Plant Physiol, 2013, 162(1):319-332. [28]Chapman N, Whalley WR, Lindsey K, et al. Water supply and not nitrate concentration determines primary root growth in Arabidopsis[J]. Plant Cell Environ, 2011, 34(6):1630-1638. [29]Gao W, Ren T, Bengough AG, et al. Predicting penetrometer resistance from the compression characteristic of soil[J]. Soil Sci Soc Am J, 2012, 76(34):361-369. [30]Passioura JB. Soil structure and plant growth[J]. J Soil Res, 1991, 29(6):717-728. [31]Liu FL, Jensen CR, Andersen MN, et al. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress[J]. Funct Plant Biol, 2003, 30(16):65-73. [32]Beemster GTS, Masle J. Effects of soil resistance to root penetration on leaf expansion in wheat(Triticum aestivum L. ):composition, number and size of epidermal cells in mature blades[J]. J Exp Bot, 1996, 47(11):1651-1662. [33]Christmann A, Weiler EW, Steudle E, et al. A hydraulic signal in root-to-shoot signalling of water shortage[J]. Plant J, 2007, 52(1):167-174. [34]Krugman T, Peleg Z, Quansah L, et al. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms[J]. Funct Inteqr Genomics, 2011, 11(4):565-583. [35]Hussain A, Black CR, Taylor IB, et al. Soil compaction. A role for ethylene in regulating leaf expansion and shoot growth in tomato?[J]. Plant Physiol, 1999, 121(4):1227-1237. [36]Kaneko M, Itoh H, Inukai Y, et al. Where do gibberellin biosynthesis and gibberellins signaling occur in rice plants?[J]. Plant J, 2003, 35(1):104-115. [37]Xu K, Xu X, Fukao T, et al. Sub1A is anethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature, 2006, 442(7103):705-708. [38]Achard P, Gong F, Cheminant S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. Plant Cell, 2008, 20(8):2117-2129. [39]Magome H, Yamaguchi S, Hanada A, et al. dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor[J]. Plant J, 2004, 37(5):720-729. [40]Magome H, Yamaguchi S, Hanada A, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis[J]. Plant J, 2008, 56(4):613-626. [41] Achard P, Cheng H, De Grauwe L, et al. Integration of plant respon-ses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94. [42]王彦波, 鲜开梅, 张永华, 等. 赤霉素的应用研究进展[J]. 北方园艺, 2007(6):74-75. [43]Vettakkorumakankav NN, Falk D, Saxena P, et al. Acrucial role for gibberellins in stress protection of plants[J]. Plant Cell Physiol, 1999, 40(23):542-548. [44]Achard P, Renou JP, Berthomé R, et al. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J]. Curr Biol, 2008, 18(9):656-660. [45]Ubeda-Tomás S, Federici F, Casimiro I, et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size[J]. Curr Biol, 2009, 19(14):1194-1199. [46]Zentella R, Zhang ZL, Park M, et al. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 2010, 19(10):3037-3057. [47]Leung J, Merlot S, Giraudat J, et al. The Arabidopsis ABSCISIC ACIDINSENSITIVE2(ABI2)and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction[J]. Plant Cell, 1997, 9(5):759-771. [48]Jung KH, Seo YS, Walia H, et al. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors[J]. Plant Physiol, 2010, 152(3):1674-1692. |