[1] Doolittle DJ, Winegar R, Lee JK, et al. The genotoxic potential of nicotine and its major metabolites[J]. Mutat Res, 1995, 344: 95-102.
[2] Campain JA. Nicotine: potentially a multifunctional carcinogen?[J]. Toxicological Sciences, 2004, 79(1): 1-3.
[3] Hecht SS, Hochalter JB, Villalta PW, et al. 2’-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor[J]. Proceeding of the National Academy of Sciences USA, 2000, 97(23): 12493-12497.
[4]Novotny TE, Zhao F. Consumption and production waste: another externality of tobacco use[J]. Tob Control, 1999, 8(1): 75-80.
[5]Wang SN, Xu P, Tang HZ, et al. Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. [J]. Biotechnology Letters, 2004, 26(19): 1493-1496.
[6] Wang S, Liu Z, Tang H, et al. Characterization of environm-entally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. [J]. Microbiol, 2007, 153: 1556-1565.
[7] Wang SN, Xu P, Tang HZ, et al. ‘Green’ route to 6-hydroxy-3-succ-inoyl-pyridine from(S)-nicotine of tobacco waste by whole cells of a Pseudomonas sp. [J]. Environmental Science Technology, 2005, 39: 6877-6880.
[8] Tang H, Wang L, Wang W, et al. Systematic unraveling of the unsol-ved pathway of nicotine degradation inPseudomonas[J]. PLoS Genet, 2013, 9(10): e1003923.
[9]Tang H, Wang S, Ma L, et al. A novel gene, encoding 185 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16. [J]Appl Environ Microbiol, 2008, 74(5): 1567-1574.
[10]Tang H, Yao Y, Zhang D, et al. A novel NADH-dependent and FAD-containing hydroxylase is crucial for nicotine degradation by Pseud-omonas putida[J]. J Biol Chem, 2011, 286: 39179-39187.
[11]McPherson A. Crystallization of biological macromolecules[M]. 1st ed. New York: Cold Spring Harbor Laboratory Press, 1999.
[12]胡传明, 于浩, 唐鸿志, 等. 6-羟基-3-琥珀酰吡啶单加氧酶的纯化与结晶条件[J]. 微生物学通报, 2014, 41(9): 1779-1784.
[13]Carson M, Johnson DH, McDonald H, et al. His-tag impact on structure[J]. Acta Cryst D, 2007, 63: 295-301.
[14] Bergfors TM. Protein crystallization: techniques, strategies, and tips: a laboratory manual[M]. California: International Unive-rsity Line, 1999.
[15]Derewenda ZS, Vekilov PG. Entropy and surface engineering in protein crystallization[J]. Acta Cryst D, 2006, 62: 116-124.
[16]Strong M, Sawaya MR, Wang S, et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis[J]. Proceedings of the National Academy of Sciences, 2006, 103(21): 8060-8065.
[17]Hall TMT, Porter JA, Young KE, et al. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins[J]. Cell, 1997, 91(1): 85-97.
[18]Bauman JD, Das K, Ho WC, et al. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design[J]. Nucleic Acids Research, 2008, 36(15): 5083-5092.
[19]Zheng L, Baumann U, Reymond JL. An efficient one-step site-directed and site-saturation mutagenesis protocol[J]. Nucleic Acids Research, 2004, 32(14): e115.
[20]Li J, Li C, Xiao W, et al. Site-directed mutagenesis by combination of homologous recombination and DpnI digestion of the plasmid template in Escherichia coli[J]. Analytical Biochemistry, 2008, 373(2): 389-391.
[21]Carter P. Site-directed mutagenesis[J]. Biochemical Journal, 1986, 237(1): 1.
[22] Brondyk WH. Selecting an appropriate method for expressing a rec-ombinant protein[J]. Methods Enzymol, 2009, 463: 131-147.
[23] Estell DA, Graycar TP, Miller JV, et al. Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering[J]. Science, 1986, 233(4764): 659-663.
[24]Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques[J]. Enzyme Microb Technol, 2007, 40: 1451-1463.
[25]Rengachari S, Aschauer P, Sturm C, et al. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae[J]. Acta Crystallographica Section F: Structural Biology Communications, 2015, 71(2): 242-245.
[26]Kantardjieff KA, Rupp B. Protein isoelectric point as a predictor for increased crystallization screening efficiency[J]. Bioinformatics, 2004, 20(14): 2162-2168.
[27]Smits SHJ, Mueller A, Grieshaber MK, et al. Coenzyme-and His-tag-induced crystallization of octopine dehydrogenase[J]. Acta Crystallogr F: Struct Biol Crystallization Commun, 2008, 64(9): 836-839.
[28]Chen D, Tang H, Lv Y, et al. Structural and computational studies of the maleate isomerase from Pseudomonas putida S16 reveal a breathing motion wrapping the substrate inside[J]. Molecular Microbiology, 2013, 87(6): 1237-1244. |