[1]Henry O, Dormond E, Perrier M, et al. Insights into adenoviral vector production kinetics in acoustic filter-based perfusion cultures[J]. Biotechnology and Bioengineering, 2004, 86(7): 765-774. [2]Pohlscheidt M, Langer U, Minuth T, et al. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium[J]. Vaccine, 2008, 26(12): 1552-1565. [3]Huang D, Xia-Hou K, Liu XP, et al. Rational design of medium supplementation strategy for improved influenza viruses production based on analyzing nutritional requirements of MDCK Cells[J]. Vaccine, 2014, 32(52): 7091-7097. [4]孔文刚, 黄锭, 罗剑, 等. 细胞密度和营养供给对 H1N1流感病毒产率的影响[J]. 生物技术通报, 2015, 31(1): 203-208. [5]Hatakeyama S, Sakai-Tagawa Y, Kiso M, et al. Enhanced expression of an α2, 6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor[J]. Journal of Clinical Microbiology, 2005, 43(8): 4139-4146. [6]Olsen CW, Kehren JC, Dybdahl-Sissoko NR, et al. bcl-2 alters influenza virus yield, spread, and hemagglutinin glycosylation[J]. Journal of Virology, 1996, 70(1): 663-666. [7]Tsao YS, Condon R, Schaefer E, et al. Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells[J]. Cytotechnology, 2001, 37(3): 189-198. [8]Aggarwal K, Jing F, Maranga L, et al. Bioprocess optimization for cell culture based influenza vaccine production[J]. Vaccine, 2011, 29(17): 3320-3328. [9]Ferreira TB, Ferreira AL, Carrondo MJ, et al. Effect of re-feed strategies and non-ammoniagenic medium on adenovirus production at high cell densities[J]. J Biotechnol, 2005, 119(3): 272-280. [10]Ferreira TB, Ferreira AL, Carrondo MJ, et al. Two different serum-free media and osmolality effect upon human 293 cell growth and adenovirus production[J]. Biotechnol Lett, 2005, 27(22): 1809-1813. [11]Garnier A, C?té J, Nadeau I, et al. Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells[J]. Cytotechnology, 1994, 15(1-3): 145-155. [12]Nadeau I, Garnier A, Cote J, et al. Improvement of recombinant protein production with the human adenovirus/293S expression system using fed-batch strategies[J]. Biotechnol Bioeng, 1996, 51(6): 613-623. [13]Genzel Y, Dietzsch C, Rapp E, et al. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation[J]. Applied Microbiology and Biotechnology, 2010, 88(2): 461-475. [14]Dubois E, Merle G, Roquier C, et al. Diversity of enterovirus sequences detected in oysters by RT-heminested PCR[J]. Int J Food Microbiol, 2004, 92(1): 35-43. [15]刘鹏, 李佳林, 马超, 等. H1N1流感病毒在微载体培养MDCK细胞上增殖的研究[J]. 微生物学免疫学进展, 2013, 41(1): 12-15. [16]张严予, 马磊, 沈霏, 等. 无血清微载体培养MDCK细胞和甲型流感病毒H1N1的条件优化[J]. 云南大学学报: 自然科学版, 2011: 340-344. [17]李春艳, 肖晶, 李曦, 等. 微载体规模化培养MDCK细胞增殖H9N2亚型禽流感病毒的研究[J]. 中国人兽共患病学报, 2009, 25(12): 1149-1153. [18]Kalbfuss B, Kn?chlein A, Kr?ber T, et al. Monitoring influenza virus content in vaccine production: precise assays for the quantitation of hemagglutination and neuraminidase activity[J]. Biologicals, 2008, 36(3): 145-161. [19]Bock A, Schulze-Horsel J, Schwarzer J, et al. High-density microcarrier cell cultures for influenza virus production[J]. Biotechnology Progress, 2011, 27(1): 241-250. [20]Frensing T, Heldt FS, Pflugmacher A, et al. Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles[J]. PLoS One, 2013, 8(9): 8999-9008. [21]Chen A, Poh SL, Dietzsch C, et al. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells[J]. BMC Biotechnology, 2011, 11(1): 81. [22]Rehberg M, Ritter J, Genzel Y, et al. The relation between growth phases, cell volume changes and metabolism of adherent cells during cultivation[J]. Journal of Biotechnology, 2013, 164(4): 489-499. [23]Huang HL, Hsing HW, Lai TC, et al. Trypsin-induced proteome alteration during cell subculture in mammalian cells[J]. J Biomed Sci, 2010, 17: 36. [24] Hossain MJ, Perez S, Guo Z, et al. Establishment and characteriz-ation of a Madin-Darby canine kidney reporter cell line for influenza A virus assays[J]. J Clin Microbiol, 2010, 48(7): 2515-2523. [25]Janke R, Genzel Y, H?ndel N, et al. Metabolic adaptation of MDCK cells to different growth conditions: Effects on catalytic activities of central metabolic enzymes[J]. Biotechnology and Bioengineering, 2011, 108(11): 2691-2704. [26]Ritter JB, Wahl AS, Freund S, et al. Metabolic effects of influenza virus infection in cultured animal cells: Intra-and extracellular metabolite profiling[J]. BMC Systems Biology, 2010, 4(1): 61. [27]Petiot E, Jacob D, Lanthier S, et al. Metabolic and kinetic analyses of influenza production in perfusion HEK293 cell culture[J]. BMC Biotechnology, 2011, 11(1): 84. [28]Maranga L, Aunins JG, Zhou W. Characterization of changes in PER. C6 cellular metabolism during growth and propagation of a replication-deficient adenovirus vector[J]. Biotechnol Bioeng, 2005, 90(5): 645-655. [29]Ferreira TB, Ferreira AL, Carrondo MJT, et al. Effect of refeed strategies and non-ammoniagenic medium on adenovirus production at high cell densities[J]. Journal of Biotechnology, 2005, 119(3): 272-280. |