Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (3): 44-51.doi: 10.13560/j.cnki.biotech.bull.1985.2016.03.008
• Technique • Previous Articles Next Articles
WANG Jing, PAN Xiao-ming, LIU Yu, LIANG Xing-guo
Received:
2015-05-19
Online:
2016-03-24
Published:
2016-03-25
WANG Jing, PAN Xiao-ming, LIU Yu, LIANG Xing-guo. Research Progress on Enzymatic Synthesis of RNA[J]. Biotechnology Bulletin, 2016, 32(3): 44-51.
[1]Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589):2053-2056. [2]Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Res, 2005, 33(4):1290-1297. [3]Shen H, Sun T, Ferrari M. Nanovector delivery of siRNA for cancer therapy[J]. Cancer Gene Ther, 2012, 19:367-373. [4]Lee H, Lytton-Jean A, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012 7(6):389-393. [5]Geary C, Rothemund PWK, Andersen ES. A single-stranded architecture for cotranscriptional folding RNA nanostructures[J]. Science, 2014, 345(6198):799-804. [6]Grabow WW, Jaeger L. RNA self-assembly and RNA nanotechnology[J]. Acc Chem Res, 2014, 47(6):1871-1880. [7]Michelson A, Todd AR. Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3’:5’-internucleotidic linkage[J]. J Chem Soc(Resumed), 1955:2632-2638. [8]王来新, 张礼和. RNA化学合成中的保护基[J]. 有机化学, 1994, 14(3):242-258. [9]Gallo S, Furler M, Sigel RK. In vitro transcription and purification of RNAs of different size[J]. Chimia Int J Chem, 2005, 59(11):812-816. [10]Cai Z, Gorin A, Frederick R, et al. Solution structure of P22 transc-riptional antitermination N peptide-box B RNA complex[J]. Nat Struct Biol, 1998, 5(3):203-212. [11]Hogrefe RI, Midthune B, Lebedev A. Current challenges in nucleic acid synthesis[J]. Isr J Chem, 2013, 53(6-7):326-349. [12]Melton DA, Krieg PA, Rebagliati MR, et al. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter[J]. Nucleic Acids Res, 1984, 12(18):7035-7056. [13]Milligan JF, Groebe DR, Witherell GW, et al. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates[J]. Nucleic Acids Res, 1987, 15(21):8783-8798. [14]Krupp G. Unusual promoter-independent transcription reactions with bacteriophage RNA polymerases[J]. Nucleic Acids Res, 1989, 17(8):3023-3036. [15]Chamberlin M, Ryan T. 4 bacteriophage DNA-dependent RNA polymerases[J]. Enzyme, 1982, 15:87-108. [16]Chamberlin M, Ring J. Characterization of T7-specific ribonucleic acid polymerase II. Inhibitors of the enzyme and their application to the study of the enzymatic reaction[J]. J Biol Chem, 1973, 248(6):2245-2250. [17]Walker SC, Avis JM, Conn GL. General plasmids for producing RNA in vitro transcripts with homogeneous ends[J]. Nucl Acids Res, 2003, 31(15):e82. [18]Brown JA, Bulkley D, Wang JM, et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix[J]. Nat Struct Mol Biol, 2014, 21:633-640. [19]Brown JA, Valenstein ML, Yario TA. Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENβ noncoding RNAs[J]. Proc Natl Acad Sci USA, 2012, 109(47):19202-19207. [20]Rouhana L, Weiss JA, Forsthoefel DJ, et al. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians:Methodology and Dynamics[J]. Dev Dyn, 2013, 242(6):718-730. [21]张璐, 钟雄霖, 彭朝晖, 等. 用T7 RNA聚合酶体外转录合成大鼠肝tRNAIle[J]. 生物化学与生物物理进展, 1997, 24(1):78-82. [22]Pavel I, Belcher A, Browning KS. A method for coupled transcrip-tion and aminoacylation of cysteinyl-tRNA[J]. Anal Biochem, 2004, 335(2):192-195. [23]Harrington KM, Nazarenko IA, Dix DB, et al. In vitro analysis of translational rate and accuracy with an unmodified tRNA[J]. Biochemistry, 1993, 32(30):7617-7622. [24]Moran S, Ren RXF, Sheils CJ, et al. Non-hydrogen bonding ‘terminator’ nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis[J]. Nucleic Acids Res, 1996, 24(11):2044-2052. [25]Ho?fer K, Langeju?rgen LV, Ja?schke A. Universal aptamer-based real-time monitoring of enzymatic RNA synthesis[J]. J Am Chem Soc, 2013, 135(37):13692-13694. [26]Donzé O, Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase[J]. Nucleic Acids Res, 2002, 30(10):e46. [27]Cheong HK, Hwang E, Cheong C. Rapid preparation of RNA samples using DNA-affinity chromatography and DNAzyme methods[J]. Methods Mol Biol, 2012, 941:113-121. [28]Sharmeen L, Taylor J. Enzymatic synthesis of RNA oligonucleotides[J]. Nucleic Acids Res, 1987, 15(16):6705-6711. [29]Krupp G. RNA synthesis:strategies for the use of bacteriophage RNA polymerases[J]. Gene, 1988, 72(1-2):75-89. [30]Daube SS, von Hippel PH. Functional transcription elongation complexes from synthetic RNA-DNA bubble duplexes[J]. Science, 1992, 258(5086):1320-1324. [31]Daubendiek SL, Kool ET. Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles[J]. Nat Biotechnol, 1997, 15(3):273-277. [32]Kao C, Zheng M, Rüdisser S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase[J]. RNA, 1999, 5(9):1268-1272. [33]Kao C, Rüdisser S, Zheng M. A simple and efficient method to transcribe RNAs with reduced 3' heterogeneity[J]. Methods, 2001, 23(3):201-205. [34]Sherlin LD, Bullock TL, Nissan T, et al. Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization[J]. RNA, 2001, 7(11):1671-1678. [35]Daubendiek SL, Ryan K, Kool ET. Rolling-circle RNA synthesis:circular oligonucleotides as efficient substrates for T7 RNA polymerase[J]. J Am Chem Soc, 1995, 117(29):7818-7819. [36]Diegelman AM, Daubendiek SL, Kool ET. Generation of RNA lad-ders by rolling circle transcription of small circular oligodeoxyribo-nucleotides[J]. Biotechniques, 1998, 25(5):754-758. [37]Aiyar SE, Helmann JD, deHaseth PL. A mismatch bubble in double-stranded DNA suffices to direct precise transcription initiation by Escherichia coli RNA polymerase[J]. J Biol Chem, 1994, 269(18):13179-13184. [38]M?llegaard NE, Buchardt O, Egholm M, et al. Peptide nucleic acid. DNA strand displacement loops as artificial transcription promoters[J]. Proc Natl Acad Sci USA, 1994, 91(9):3892-3825. [39]Diegelman AM, Kool ET. Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes[J]. Nucleic Acids Res, 1998, 26(13):3235-3241. [40]Wang X, Li C, Gao X, et al. Preparation of small RNAs using rolling circle transcription and site-specific RNA disconnection[J]. Mol Ther Nucleic Acids, 2015, 4:e215. [41]Wichlacz A, Legiewicz M, Ciesiolka J. Generating in vitro transcripts with homogenous 3’ ends using trans-acting antigenomic delta ribozyme[J]. Nucleic Acids Res, 2004, 32(3):e39. [42]Price SR, Ito N, Oubridge C, et al. Crystallization of RNA-protein complexes I. Methods for the large-scale preparation of RNA suitable for crystallographic studies[J]. J Mol Biol, 1995, 249(2):398-408. [43]Walker SC, Avis JM, Conn GL. General plasmids for producing RNA in vitro transcripts with homogeneous ends[J]. Nucleic Acids Res, 2003, 31(15):e82. [44]Kasprowicz A, Stokowa-So?tys K. In vitro selection of deoxyribozymes active with Cd2+ ions resulting in variants of DNAzyme 8-17[J]. Dalton Trans, 2015, 44(17):8138-8149. [45]Fokina AA, Stetsenko DA, Fran?ois JC. DNA enzymes as potential therapeutics:towards clinical application of 10-23 DNAzymes[J]. Expert Opin Biol Ther, 2015, 15(5):689-711. [46]Robaldo L, Berzal-Herranz A, Montserrat JM, et al. Activity of core-modified 10-23 DNAzymes against HCV[J]. Chem Med Chem, 2014, 9(9):2172-2177. [47]Kumar B, Kumar P, Rajput R, et al. Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication[J]. Nucleic Acid Ther, 2013, 23(5):355-362. [48]Sohail M, Doran G, Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy[J]. Nucleic Acids Res, 2003, 31(7):e38. [49]Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme[J]. Proc Natl Acad Sci USA, 1997, 94(9):4262-4266. [50]Inoue H, Hayase Y, Iwai S, et al. Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H[J]. FEBS Lett, 1987, 215(2):327-330. [51]Lapham J, Crothers DM. Site-specific cleavage of transcript RNA[J]. Method Enzymol, 2000, 317:132-139. [52]Miller JT, Khvorova A, Scaringe SA, et al. Synthetic tRNALys, 3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes[J]. Nucleic Acids Res, 2004, 32(15):4687-4695. [53]Pope WH, Weigele PR, Chang J, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5:A ‘horned’ bacteriophage of marine synechococcus[J]. J Mol Biol, 2007, 368(4):966-981. [54]Raytcheva DA, Haase-Pettingell C, Piret JM, et al. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid[J]. J Virol, 2011, 85(5):2406-2415. [55]Zhu B, Tabor S, Raytcheva DA, et al. The RNA polymerase of marine cyanophage Syn5[J]. J Biol Chem, 2013, 288(5):3545-3552. [56]Zhu B, Tabor S, Richardson CC. Syn5 RNA polymerase synthesizes precise run-off RNA products[J]. Nucleic Acids Res, 2013, 42(5):e33. |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[4] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[5] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[6] | ZHAO Jin-ling, AN Lei, REN Xiao-liang. Development of Single Cell Transcriptome Sequencing Technology and Its Application in Caenorhabditis elegans [J]. Biotechnology Bulletin, 2023, 39(6): 158-170. |
[7] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[8] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[9] | AN Lei, ZHAO Jin-ling, REN Xiao-liang. RNA Modification and Its Research Progress in Caenorhabditis elegans [J]. Biotechnology Bulletin, 2023, 39(4): 176-186. |
[10] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[11] | LI Qi, YANG Xiao-lei, LI Xiao-lin, SHEN You-lei, LI Jian-hong, YAO Tuo. Identification of Phytate Phosphorus-solubilizing PGPB in Avena sativa Rhizosphere from Alpine Grassland and Functional Characteristics of Dominant Genus Pseudomonas sp. [J]. Biotechnology Bulletin, 2023, 39(3): 243-253. |
[12] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[13] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[14] | HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus [J]. Biotechnology Bulletin, 2023, 39(10): 163-174. |
[15] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||