[1]Shi J, Habben JE, Archilbald RL, et al. Over-expression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize[J]. Plant Physiology 2015, 169(1):266-282. [2]Pandey GK. Emergence of a novel calcium signaling pathway in plants:CBL-CIPK signaling network[J]. Physiology and Molecular Biology of Plants, 2008, 14:51-68. [3]孙越. 抗玉米螟、抗草甘膦、抗旱的转基因复合性状玉米种质的创制[D]. 济南:山东大学, 2014. [4]Quan R, Shang M, Zhang H, et al. Engineering of enhanced glyeine betaine synthesis improves drought tolerance in maize[J]. Plant Biotechnology Journal, 2004, 2(6):477-486. [5]Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase(NPKI)enhanced drought tolerance in transgenic maize[J]. J Exp Bot, 2004, 55(399):1013-1019. [6]Wang CR, Yang AF, Yue GD, et al. Enhanced expression of phospholipase C1(ZmPLC1)improves drought tolerance in transgenic maize[J]. Planta, 2008, 227(5):1127-1140. [7]Li B, Wei AY, Song CX, et al. Heterologous expression of the TsVP gene improves the drought resistance of maize[J]. Plant Biotechnology Journal, 2008, 6:146-159. [8]陆宝石. AtGPX3和AtCHX23玉米转基因植株的获得[D]. 开封:河南大学, 2011. [9]刘秀霞. 磷脂酰肌醇合成酶基因、磷脂酶A2基因表达水平的改变对玉米抗旱性的影响[D]. 济南:山东大学, 2012. [10]罗安才, 李利霞, 党辉, 等. 转基因玉米(36Ba3C42-1-3)大喇叭口期抗旱性的研究[J]. 重庆师范大学学报:自然科学版, 2015, 32(4):1-5. [11]Yoshiba Y, Kiyosue T, Katagiri T, et al. Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress[J]. The Plant Journal, 1995, 7(5):751-760. [12]Verslues PE, Agarwal M, Katiyar-Agarwal S, et al. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status[J]. The Plant Journal, 2006, 45(4):523-539. [13]Kishor PBK, Hong Z, Miao GH, et al. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology, 1995, 108:1387-1394. [14]Zhang CS, Lu Q, Verma DPS. Removal of feedback inhibition of Δ1-pyrroline- 5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants[J]. J Biol Chem, 1995, 270(35):20491-20496. [15]Hu CA, Delauney AJ, Verma DPS. A bifunctional enzyme(△1- pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[J]. Proc Natl Acad Sci USA, 1992, 89:9354- 9358. [16]李志亮, 黄丛林, 张秀海, 等. 利用基因枪法向高羊茅导入P5CS基因的研究[J]. 园艺学报, 2005, 32(4):653-657. [17] 李志亮, 杨清, 叶嘉, 等. 利用P5CS基因转化白三叶的研究[J]. 生物技术通报, 2012(5):61-65. [18] Klein TM, Wolf ED, Wu R, et al. High-velocity microprojectiles for delivering nucleic acids into living cells[J]. Nature, 1987, 327:70-73. [19]Li ZL, Bian MD, Wu ZY, et al. Isolation and drought-tolerant function analysis of ZmPti1-1, a homologue to Pti1, from maize(Zea mays L. )[J]. African Journal of Biotechnology, 2011, 10:5327-5336. [20]Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies[J]. Plant Soil, 1973, 39:205-207. [21]张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990(4):62-65. [22]Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968, 125:189-198. [23]赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3):207-210. [24]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta, 2003, 218:1-14. [25]高亚迪. 农杆菌介导的P5CS-基因转化东农303马铃薯的研究[D]. 哈尔滨:东北林业大学, 2010. [26]王忠华, 李旭晨, 夏英武. 作物抗旱的作用机制及其基因工程改良研究进展[J]. 生物技术通报, 2002(1):16-19. [27]曹丽, 孙振元, 义鸣放, 等. 多年生黑麦草P5CS基因的cDNA克隆、表达及亚细胞定位[J]. 园艺学报, 2010, 37(9):1477-1484. [28]曾光, 石庆华, 张博, 等. 黄花苜蓿MfNHX基因和MfP5CS基因的克隆和序列分析[J]. 新疆农业科学, 2010, 47(6):1231-1235. [29]黄志, 邹志荣, 黄焕焕, 等. 甜瓜抗旱性相关基因MeP5CS的克隆、序列分析及表达[J]. 园艺学报, 2010, 8:1279-1286. [30] Chen J, Zhang X, Jing R, et al. Cloning and genetic diversity analy-sis of a new P5CS gene from common bean(Phaseolus vulgaris L.)[J]. Theor Appl Genet, 2010, 120(7):1393-1404. [31] Chen JB, Yang JW, Zhang ZY, et al. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabi-dopsis[J]. J Genet, 2013, 92(3):461-469. [32]徐博, 任伟, 徐安凯, 等. 朝鲜碱茅Δ’-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆及表达分析[J]. 华北农学报, 2011, 26(6):20-26. [33]Su M, Li XF, Ma XY, et al. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment[J]. Plant Sci, 2011, 6:652-659. [34]焦蓉, 刘贯山, 刘好宝, 等. 普通烟草抗渗透胁迫基因NtP5CS的克隆与表达分析[J]. 中国烟草学报, 2012, 2:49-57. [35]丛丽丽. 虉草耐盐性鉴定及P5CS基因克隆[D]. 雅安:四川农业大学, 2012. [36]Cong LL, Zhang XQ, Yang FY, et al. Isolation of the P5CS gene from reed canary grass and its expression under salt stress[J]. Genetics and Molecular Research, 2014, 13(4):9122-9133. [37]张桦, 张富春, 曾光, 等. 新牧一号苜蓿MvP5CS基因的克隆和功能分析[J]. 草业学报, 2012, 29(1):51-58. [38]童伟. 桑树干旱胁迫转录组测序和P5CS基因的克隆及表达分析[D]. 镇江:江苏科技大学, 2013. [39]冯远航. 枸杞LmP5CS基因克隆及表达分析[D]. 天津:天津大学, 2013. [40]郑琳琳. 唐古特白刺NtP5CS和NtCIPK2基因的克隆及功能分析[D]. 呼和浩特:内蒙古大学, 2013. [41]Zheng L, Dang Z, Li H, et al. Isolation and characterization of a Δ1-pyrroline-5-carboxylate synthetase(NtP5CS)from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue[J]. Mol Biol Rep, 2014, 41(1):563-572. [42]张乐新, 苏蔓, 马甜, 等. 羊草Δ1-吡咯啉-5-羧酸合成酶(LcP5CS1)基因的克隆与分析[J]. 草业学报, 2013, 22(4):197-204. [43] An Y, Zhang M, Liu G, et al. Proline accumulation in leaves of Periploca sepium via both biosynthesis up-regulation and transport during recovery from severe drought[J]. PLoS One, 2013, 7:1-10. [44] Kim GB, Nam YW. A novel Δ(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation[J]. J Plant Physiol, 2013, 170(3):291-302. [45]张霞, 唐维, 刘嘉, 等. 过量表达水稻OsP5CS1和OsP5CS2基因提高烟草脯氨酸的生物合成及其非生物胁迫抗性[J]. 应用与环境生物学报, 2014, 20(4):717-722. [46]马玉花, 冶贵生, 刘宝尧, 等. 青海野生中国沙棘P5CS基因的扩增及序列分析[J]. 西北林学院学报, 2014, 5:88-91. [47]李鸿雁, 李大红. 转拟南芥P5CS1基因增强羽衣甘蓝的耐旱性[J]. 植物生理学报, 2014, 50(7):1009-1013. [48]张兆元, 陈吉宝, 宋佳璘, 等. 野生大豆P5CS基因的克隆及对盐胁迫反应[J]. 植物遗传资源学报, 2014, 4:844-849. [49]Wang G, Zhang JS, Wang GF, et al. Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize[J]. The Plant Cell, 2014, 26(6):2582-2600. [50]Ramadan AM, Hassanein SE. Characterization of P5CS gene in Calotropis procera plant from the de novo assembled transcriptome contigs of the high-throughput sequencing dataset[J]. Comptes Rendus Biologies, 2014, 337(12):683-690. [51]钟浩, 高贵宾, 潘雁红, 等. 绿竹P5CS基因的扩增及序列分析[J]. 安徽农业科学, 2015, 43(19):25-29. [52]刘静静, 曲延英, 姚正培, 等. 大蒜芥Δ'-吡咯啉-5-羧酸合成酶基因(P5CS)的克隆及表达分析[J]. 草业科学, 2015, 32(2):210-216. [53]王丽珊, 林清凡, 陈兰平, 等. 茶树P5CS基因克隆及其在渗透和高盐胁迫下的表达分析[J]. 热带作物学报, 2015, 36(1):68-75. [54]杨慧. 转P5CS基因冰草后代植株生物学特性观察与分子检测研究[D]. 呼和浩特:内蒙古农业大学, 2012. [55]曹丽, 义鸣放, 孙振元, 等. 多年生黑麦草P5CS基因的定点突变及其在拟南芥中的转化[J]. 草业学报, 2011, 20(1):242-247. [56]陈吉宝, 赵丽英, 毛新国, 等. 转PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应[J]. 作物学报, 2010, 1:147-153. [57]徐博, 任伟, 王英哲, 等. 农杆菌介导的朝鲜碱茅PuP5CS基因转化紫花苜蓿的研究[J]. 草业学报, 2015, 6:895-901. [58]杨云尧. 转MvP5CS和MvNHX1基因提高棉花抗旱性的研究[D]. 乌鲁木齐:新疆农业大学, 2012. [59] 李葵花, 高玉亮, 吴京姬. 转P5CS基因马铃薯“东农303”耐盐、抗旱性研究[J]. 江苏农业科学, 2014, 42(11):131-133. [60]Zhu B, Su J, Chang M, et al. Overexpression of a △1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice[J]. Plant Sci, 1998, 139:41-48. [61]Sawahel WA, Hassan AH. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline[J]. Biotechnology Letters, 2002, 24(9):721-725. [62]韩素英, 张守攻, 汪泉, 等. 小叶杨Δ1-吡咯琳-5-羧酸合成酶(P5CS)基因克隆及在杂种落叶松中的转化[J]. 生物技术通报, 2006(3):88-92. [63]Dibax R, Deschamps C, Filho JCB, et al. Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene[J]. Biologia Plantarum, 2010, 1:6-12. [64]Szabados L, Savouré A. Proline:a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15:89-97. [65]Singh R, Pandey N, Naskar J, et al. Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species[J]. Protoplasma, 2015, 252(2):423-438. [66] 陈志辉, 邹学校. 玉米抗旱机理与育种研究现状及发展趋势[J]. 湖南农业科学, 2007, 5:63-66. |