[1] 黄治国, 刘燕梅, 卫春会, 等. 浓香型酒醅微生物群落与理化指标的相关性分析[J]. 现代食品科技, 2014, 30(11):38-42. [2] 岳元媛, 张文学, 刘霞, 等. 浓香型白酒窖泥中兼性厌氧细菌的分离鉴定[J]. 微生物学通报, 2007, 34(2):251-225. [3] 王涛, 杜江, 陈泽军, 等. 窖泥放线菌的分离方法研究[J]. 酿酒科技, 2009(3):26-28. [4] Ercolini D. PCR-DGGE fingerp rinting:novel strate2gies for detec-tion ofmicrobes in food[J]. Journal of Microbiological Methods, 2004, 56:297-314. [5] Bekaert K, Devriese L, Maes S, et al. Characterization of the dominant bacterial communities during storage of Norway lobster and Norway lobster tails(Nephrops norvegicus)based on 16S rDNA analysis by PCR-DGGE[J]. Food Microbiology, 2015, 46:132-138. [6] Ling J, Zhang YY, Gong JD, et al. Spatial variability of cyanobacte-rial community composition in Sanya Bay as determined by DGGE fingerprinting and multivariate analysis[J]. Chinese Science Bulletin, 2013, 58(9):1019-1027. [7] 王洋清, 杨红军, 李勇. DGGE技术在森林土壤微生物多样性研究中的应用[J]. 生物技术通报, 2011, 5:75-79. [8] Hesham Ael-L, Qi R, Yang M. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis[J]. Science Direct, 2011, 23(12):2049-2054. [9] 刘慧杰, 杨彩云, 田蕴, 等. 基于PCR-DGGE技术的红树林区微生物群落结构[J]. 微生物学报, 2010, 50(7):923-930. [10] Chen HJ, Lin YZ, Fanjiang JM, Fan C. Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology[J]. Biodegradation, 2013, 24(2):227-243. [11] 陕小虎, 敖宗华, 周健, 等. 浓香型白酒窖泥原核微生物DGGE电泳条件的优化[J]. 酿酒科技, 2011(1):37-40. [12] 陶勇, 徐占成, 李东迅, 等. 窖泥细菌群落结构演替及其与环境因子的相关性[J]. 酿酒科技, 2011(9):42-46. [13] Zoet endal EG, Akkermans ADL, De Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Applied and Environmental Microbiology, 1998, 64(10):3854-3859. [14] 余有贵, 李侦, 熊翔, 等. 窖泥微生态的主要特征研究[J]. 食品科学, 2009(1):258-261. [15] Hargreaves PR, Brookes PC, Ross GJS, Poulton PR. Evaluating soil mcrobial biomasscar bonasanin dicato roflong - termenviron mental change[J]. Soil Biology and Biochemistry, 2003, 35:401- 407. [16] 刘兰兰, 史春余, 梁太波, 等. 腐植酸肥料对生姜土壤微生物量和酶活性的影响[J]. 生态学报, 2009, 29:6136-6140. [17] Staley BF, de los Reyes FL, Barlaz MA. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse[J]. Applied and Environmental Microbiology, 2011, 77(7):2381-2391. [18] Hao LP, Lu F, He PJ, et al. Predominant contribution of syntrophic acetate oxidation to themophilic methane formation at high acetate concentrations[J]. Environmental Science and Technology, 2011, 45(2):508-513. [19] Marteau P, Minekus M, Havenaar R, et al. Survival of Lactic acid bacteria in a dynamic model of the stomach and small intestine:validation and the effects of bile[J]. Dairy Science, 1997, 80(6):1031-1037. [20] 栗永乐, 李秀丽, 李传娟, 等. 内蒙古东部地区农家酸菜中乳酸菌的分离与初步鉴定[J]. 食品工业, 2012, 33:132-134. [21] Ryan P, Forbes C, McHugh S, et al. Enrichment of acetogenic bacteria in high rate. anaerobic reactors under mesophilic and thermophilic conditions[J]. Science Direct, 2010(44):4261-4269. [22] Pinder RS, Patterson JA. Growth of acetogenic bacteria in response to varying pH, acetate or carbohydrate concentration. Agriculture[J]. Food and Analytical Bacteriology, 2013(3):6-16. [23] Parameswaran P, Torres CI, Lee HS, et al. Hydrogen consumption in microbial electrochemical systems(MXCs):The role of homo-acetogenic bacteria[J]. Bioresource Technology, 2012(102):263-271. |