Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 18-26.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.004
• Orginal Article • Previous Articles Next Articles
CHE Yong-mei, HOU Li-xia, SUN Yan-jun, LIU Xin
Received:
2016-07-27
Online:
2016-10-25
Published:
2016-10-12
CHE Yong-mei, HOU Li-xia, SUN Yan-jun, LIU Xin. Hydrogen Sulfide Functions in Regulation of Stomatal Movement and Stress Response in Plant[J]. Biotechnology Bulletin, 2016, 32(10): 18-26.
[1] Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator[J]. J Neurosci, 1996, 16:1066-1071. [2] Fang T, Cao Z, Li J, et al. Auxin-induced hydrogen sulphide generation is involved in lateral root formation in tomato[J]. Plant Physiol Bioch, 2014, 76:44-51. [3] García-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling[J]. New Phytol, 2010, 188(4):977-984. [4] Kajimura M, Fukuda R, Bateman RM, et al. Interactions of multiple gas-transducing systems:hallmarks and uncertainties of CO, NO, and H 2 S gas biology[J]. Antioxid Redox Signal, 2010, 13(2):157-192. [5] Li ZG, Xie LR, Li XJ. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize(Zea mays L. )seedlings[J]. J Plant Physiol, 2015, 177:121-127. [6] Alvarez C, Calo L, Romero LC, et al. An O-acetytlserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis[J]. Plant Physiol, 2010, 152(2):656-669. [7] Hou ZH, Wang LX, Liu J, et al. Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana[J]. J Integr Plant Biol, 2013, 55(3):277-289. [8] Riemenschneider A, Nikiforova V, Hoefgen R, et al. Impact of elevated H 2 S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism[J]. Plant Physio Biochem, 2005, 43:473-483. [9] Hossain MA, Munemasa S, Uraji M, et al. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis[J]. Plant Physiol, 2011, 156(1):430-438. [10] Xie Y, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis[J]. Plant Physiol, 2014, 165:759-773. [11] Lisjak M, Srivastava N, Teklic T, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation[J]. Plant Physiol Biochem, 2010, 48(12):931-935. [12] 刘菁, 侯智慧, 赵方贵, 等. H 2 S参与ABA诱导的蚕豆气孔关闭[J]. 西北植物学报, 2011, 31(2):298-304. [13] 李洪旺, 车永梅, 侯丽霞, 等. Ca 2+ 位于H 2 O 2 上游参与H 2 S诱导的拟南芥气孔关闭过程[J]. 植物生理学报, 2015, 51(1):51-56. [14] Wang LX, Ma XY, Che YM, et al. Extracellular ATP mediates H 2 S-regulated stomatal movements and guard cell K + current in a H 2 O 2 -dependent manner in Arabidopsis[J]. Sci Bull, 2015, 60(4):419-427. [15] 张丹丹, 车永梅, 侯丽霞, 等. G蛋白位于H 2 O 2 上游参与H 2 S诱导的拟南芥气孔关闭过程[J]. 植物生理学报, 2013, 49(2):181-187. [16] Papanatsiou M, Scuffi D, Blatt MR, et al. Hydrogen sulfide regulates inward-rectifying K + channels in conjunction with stomatal closure[J]. Plant Physiol, 2015, 168:29-35. [17] 王兰香, 侯智慧, 侯丽霞, 等. H 2 O 2 介导的H 2 S产生参与干旱诱导的拟南芥气孔关闭[J]. 植物学报, 2012, 47(3):217-225. [18] 车永梅, 邹雪, 王兰香, 等. H 2 S位于SOS上游参与盐胁迫诱导的拟南芥气孔关闭[J]. 植物生理学报, 2012, 48(11):1098-1104. [19] 侯智慧, 车永梅, 王兰香, 等. H 2 S位于H 2 O 2 下游参与乙烯诱导拟南芥气孔关闭过程[J]. 植物生理学报, 2012, 48(12):1193-1199. [20] 侯智慧, 刘菁, 侯丽霞, 等. H 2 S可能作为H 2 O 2 的下游信号介导茉莉酸诱导的蚕豆气孔关闭[J]. 植物学报, 2011, 46(4):396-406. [21] Scuffi D, Álvarez C, Laspina N, et al. Hydrogen sulfide generated by L-Cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure[J]. Plant Physiol, 2014, 166:2056-2076 [22] 吴延朋, 李洪旺, 侯丽霞, 等. ABC转运体位于H 2 S上游参与盐胁迫诱导的拟南芥气孔关闭[J]. 植物生理学报, 2014, 50(4):401-406. [23] Jin Z, Xue S, Luo Y, et al. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis[J]. Plant Physiol Biochem, 2013, 62:41-46. [24] Liu J, Hou ZH, Liu GH, et al. Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stoma l closure in Vicia faba L.[J]. J Interg Agr, 2012, 11(10):1644-1653. [25] Mostofa1 NG, Saegusa D, Fujita F, et al. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na + /K + balance, mineral homeostasis and oxidative metabolism under excessive salt stress[J]. Front Plant Sci, 2015, 6:1055. [26] Christou A, Manganaris GA, Papadopoulos I, et al. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways[J]. J Exp Bot, 2013, 64(7):1953-1966. [27] Shi HT, Ye TT, Chan ZL. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass(Cynodon dactylon(L).Pers.)[J]. Plant Physiol Bioch, 2013, 71:226-234. [28] Yu LX, Zhang CJ, Shang HQ, et al. Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles[J]. J Interg Agr, 2013, 12 (3):445-456. [29] Wang YQ, Li L, Cui WT, et al. Hydrogen sulfide enhances alfalfa(Medicago sativa)tolerance against salinity during seed germination by nitric oxide pathway[J]. Plant Soil, 2012, 351:107-119. [30] Chen J, Wang WH, Wu FH, et al. Hydrogen sulfide enhances salt tolerance through nitric oxidemediated maintenance of ion homeostasis in barley seedling roots[J]. Sci Rep, 2015;5:12516. [31] Lai DW, Mao Y, Zhou H, et al. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K + loss in seedlings of Medicago sativa[J]. Plant Sci, 2014, 225(8):117-129. [32] Li J, Jia H, Wang J, et al. Hydrogen sulfide is involved in maintai-ning ion homeostasis via regulating plasma membrane Na + /H + antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root[J]. Protoplasma, 2014, 251(4):899-912. [33] Shan CJ, Zhang SL, Li DF, et al. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress[J]. Acta Physiol Plant, 2011, 33:2533-2540. [34] Zhang H, Ye YK, Wang SH, et al. Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress[J]. Plant Growth Regul, 2009, 58:243-250. [35] Jin Z, Shen J, Qiao Z, et al. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana[J]. Biochem Biophys Res Co, 2011, 414(3):481-486. [36] Shi HT, Ye TT, Han N, et al. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis[J]. J Interg Plant Biol, 2015, 57(7):628-640. [37] Ziogas V, Tanou G, Belghazi M, et al. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants[J]. Plant Mol Biol, 2015, 89:433-450. [38] Shen J, Xing T, Yuan H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions[J]. PLoS One, 2013, 8(10):e77047. [39] Stuiver CEE, De Kok LJ, Kuiper PJC. Freezing tolerance and biochemical changes in wheat shoots as affected by H 2 S fumigation[J]. Plant Physiol Biochem, 1992, 30:47-55. [40] Li ZG, Ding XJ, Du PF. Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline[J]. J Plant Physiol, 2013, 170:741-747. [41] Li L, Wang YQ, Shen WB. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots[J]. Biometals, 2012(25):617-631. [42] Chen XD, Chen Q, Zhang XM, et al. Hydrogen sulfide mediates nicotine biosynthesis in tobacco(Nicotiana tabacum)under high temperature conditions[J]. Plant Pysiol Bioch, 2016, 104:174-179. [43] Li ZG. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize(Zea mays L.)seedlings[J]. Plant Signal Behav, 2015, 10(9):e1051278. [44] Zhang H, Tan ZQ, Hu LY, et al. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings[J]. J Integr Plant Biol, 2010, 52:556-567. [45] Zhang H, Hu LY, Hu KD, et al. Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress[J]. J Integr Plant Biol, 2008, 50:1518-1529. [46] Zhang H, Hu LY, Li P, et al. Hydrogen sulfide alleviated chromium toxicity in wheat[J]. Biologia Plantrum, 2010, 54(4):743-747. [47] Dawood M, Cao FB, Jahangir MM, et al. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley[J]. J Hazard Mater, 2012, 209-210:121-128. [48] Ali B, Gill R, Yang S, et al. Hydrogen sulfide alleviates admium-induced morpho-physiological and ultrastructural changes in Brassica napus[J]. Ecotoxicol Environ Saf, 2014, 110:197-207. [49] Ali B, Song MJ, Hu WZ, et al. Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oil seed rape[J]. Ecotoxicol Environ Saf, 2014, 102:25-33. [50] Ali B, Mwamba TM, Gill RA, et al. Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide[J]. Plant Growth Regul, 2014:74:261-273. [51] Ali B, Qian P, Sun R, et al. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant[J]. Environ Sci Pollut Res, 2015, 22:3068-3081. [52] Sun J, Wang RJ, Zhang X, et al. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells[J]. Plant Physiol Bioch, 2013(65):67-74. [53] Zhang LP, Pei YX, Wang HJ, et al. Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis[J]. Oxid Med Cell Longev, 2015, 2015:804603. [54] Cui WT, Chen HP, Zhu KK, et al. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced(Homo)glutathione and reactive oxygen species homeostases[J]. Plos One, 2014, 9(10):e109669. [55] Shi H, Ye T, Chan Z. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass(Cynodon dactylon(L). Pers. )[J]. Plant Physiol Bioch, 2014, 74:99-107. [56] Li ZG, Gong M, Xie H, et al. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco(Nicotiana tabacum L.)suspension cultured cells and involvement of Ca 2+ and calmodulin[J]. Plant Sci, 2012, 185-186:185-189. [57] Fang HH, Jing T, Liu ZQ, et al. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica[J]. Cell Calcium, 2014, 56(6):472-481. [58] Bloem E, Haneklaus S, Kesselmeier Jr, et al. Sulfur fertilization and fungal infections affect the exchange of H 2 S and COS from agricultural crops[J]. J Agric Food Chem, 2012, 60(31):7588-7596. [59] Bloem E, Riemenschneider A, Volker J, et al. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. [J]. J Exp Bot, 2004, 55(406):2305-2312. [60] 王文杰, 车永梅, 郭秀萍, 等. H 2 S位于H 2 O 2 下游介导葡萄抗霜霉病过程[J]. 植物病理学报, 2013, 5:475-485. [61] Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcrip-tion factor of Arabidopsis influences both the plant senescence and defense signaling pathways[J]. Planta, 2007, 226(1):125-137. [62] Wang RK, Cao ZH, Hao YJ. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples[J]. Physiol Plant, 2014, 150(1):76-87. |
[1] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[2] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[3] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[4] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[5] | ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 44-53. |
[6] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[7] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[8] | LI Jian-jian, HE Chen-jing, HUANG Xiao-ping, XIANG Tai-he. Research Progress in the Regulation of Development and Stress Response by Long Non-coding RNAs in Plants [J]. Biotechnology Bulletin, 2023, 39(1): 48-58. |
[9] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[10] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
[11] | GU Pan, QI Xue-ying, LI Li, ZHANG Xi, SHAN Xiao-yi. Endocytosis of AtRGS1 Involved in the Regulation of G-protein-mediated Arabidopsis Development and Stress Responses [J]. Biotechnology Bulletin, 2022, 38(6): 34-42. |
[12] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[13] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[14] | XU Ji-fen, CHEN Hong-fei, WANG Na, LIU Jing. Research Advances in Hog1 MAPK Signaling Pathway in Fungi [J]. Biotechnology Bulletin, 2022, 38(11): 32-40. |
[15] | YIN Guo-liang, SUN Wen-hao, PANG Xiao-yun, SUN Fei. Application of cryo-Electron Microscopy in Molecular Botany Research [J]. Biotechnology Bulletin, 2022, 38(1): 15-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||