Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 11-17.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.007
• Orginal Article • Previous Articles Next Articles
ZHANG Tao, DONG Chun-hai
Received:
2016-06-23
Online:
2016-10-25
Published:
2016-10-12
ZHANG Tao, DONG Chun-hai. Ethylene Signaling and Its Role in Plant Stress Response[J]. Biotechnology Bulletin, 2016, 32(10): 11-17.
[1] Binder BM, Chang C, Schaller GE. Perception of ethylene by plants-ethylene receptors[M]// McManus MT. Annual plant reviews vol. 44:The plant hormone ethylene. Oxford:Wiley-Blackwell, 2012:117-45. [2] Guo H, Ecker JR. The ethylene signaling pathway:new insights[J]. Curr Opin Plant Biol, 2004, 7:40-49. [3] Bisson MMA, Groth G. New insight in ethylene signaling:autokinase activity of ETR1 modulates the interaction of receptors and EIN2[J]. Mol Plant, 2010, 3:882-889. [4] Ju C, Yoon GM, Shemansky JM, et al. CTR1phosphorylates EIN2 to control ethylene signaling from the ER membrane o the nucleus[J]. Proc Natl Acad Sci USA, 2012, 9:19486-19491. [5] Wen X, Zhang C, Ji Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Res, 2012, 22:1613-6. [6] Li W, Ma M, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163:670-83. [7] Merchante C, Brumos J, Yun J, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2[J]. Cell, 2015, 163:684-97. [8] An F, Zhao Q, Ji Y, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis[J]. Plant Cell, 2010, 22:2384-401. [9] Resnick JS, Wen CK, Shockey JA, et al. REVERSION-TOETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103:7917-7922. [10] Dong CH, Jang M, Scharein B, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1[J]. J Biol Chem, 2010, 285:40706-40713. [11] Barry CS, Giovannoni JJ. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling[J]. Proc Natl Acad Sci USA, 2006, 103:7923-7928. [12] Ma Q, Du W, Brandizzi F, et al. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato[J]. Plant Physiol, 2012, 160:1968-1984. [13] Rivarola M, Mcclellan CA, Resnick JS, et al. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1[J]. Plant Physiol, 2009, 150:547-551. [14] Chang JH, Clay JM, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis[J]. Plant J, 2014, 77:558-567. [15] Wang H, Sun Y, Chang J, et al. Regulatory function of Arabidopsis lipid transfer protein 1(LTP1)in ethylene response and signaling[J]. Plant Molecular Biology, 2016, 91:471-484. [16] Gao Z, Chen YF, Randlett MD, et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes[J]. J Biol Chem, 2003, 278:34725-34732. [17] Ji Y, Guo H. From endoplasmic reticulum(ER)to nucleus:EIN2 bridges the gap in ethylene signaling[J]. Mol Plant, 2013, 6:11-14. [18] Li WY, Ma MD, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163:670-683. [19] Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE -FACTOR1[J]. Genes Dev, 1998, 12:3703-3714. [20] Zhu Z, An F, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108:12539-12544. [21] Song S, Huang H, Gao H, et al. Interaction between MYC2 and ETHYLENEIN SENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell, 2014, 26:263-79. [22] An F, Zhao Q, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis[J]. Plant Cell, 2010, 22:2384-401. [23] Achard P, Cheng H. De Grauwel, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94. [24] Wang NN, Shih MC, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses[J]. J Exp Bot, 2005, 56(413):909-920. [25] Cao WH, Liu J, Zhou QY, et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress[J]. Plant Cell Environ, 2006, 29:1210-1219. [26] Wang Y, Wang T, Li K, et al. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress[J]. Plant Growth Regul, 2008, 54:261-269. [27] Cao Y, Chen S, Zhang J. Ethylene signaling regulates salt stress response[J]. Plant Signaling & Behavior, 2008, 3:761-763. [28] He X, Mu R, Cao W, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development[J]. Plant J, 2005, 44:903-916. [29] Wang Y, Liu C, Li K, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway[J]. Plant Mol Biol, 2007, 64:633-644. [30] Peng J, Li Z, Wen X, et al. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J]. PLoS Genet, 10:e1004664. [31] Zhang L, Li Z, Quan R, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiology, 2011, 157:854-865. [32] Xu Z, Xia L, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1(TaERF1)that increases multiple stress tolerance[J]. Plant Mol Biol, 2007, 65:719-732. [33] Wang H, Huang Z, Chen Q, et al. Ectopic over-expression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance[J]. Plant Mol Biol, 2004, 55:183-192. [34] Zhai Y, Wang Y, Li Y, et al. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco[J]. Gene, 2013, 513:174-183. [35] Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta, 2004, 220:262-270. [36] Chen T, Yang Q, et al. An alfalfa(Medicago sativa L. )ethylene response factor gene, MsERF11, enhances salt tolerance in transg-enic Arabidopsis[J]. Plant Cell Rep, 2012, 31:1737-1746. [37] Wu D, Ji J, Wang G, et al. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco[J]. Plant Cell Rep, 2014, 33:2033-2045. [38] Liu W, Wang Y, Gao C. The ethylene response factor(ERF)genes from Tamarix hispida respond to salt, drought and ABA treatment[J]. Trees, 2014, 28:317-327. [39] Dong H, Zhen Z, Peng J, et al. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis[J]. J Exp Bot, 2011, 62(14):4875-4887 [40] Xu J, Li Y, Wang Y, et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis[J]. J Biol Chem, 2008, 283(40):26996-27006 [41] Yang C, Ma B, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiol, 2015, 169:148-165. [42] Arraes FBM, Beneventi MA, Sa MELD, et al. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance[J]. Bmc Plant Biology, 2015, 15(1):1-20. [43] Habben JE, Bao X, et al. Transgenic alteration of ethylene biosynt-hesis increases grain yield in maize under field drought-stress con-ditions[J]. Plant Biotechnology Journal, 2014, 12(6):685-693. [44] Wan L, Zhang J, Zhang H, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLoS One, 2011, 6:e25216. [45] Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci, 2002, 7:106-111. [46] Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold- and drought-response in barley[J]. Plant Mol Bio, 2004, l55:399-416. [47] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression[J]. Plant Cell, 1997, 9:1859-1868. [48] Wang H, Wang F, Zheng F, et al. Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance[J]. Plant Growth Regulation, 2016, 79:107-117. [49] Wu L, Zhang Z, Zhang H, et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing[J]. Plant Physiol, 2008, 148:1953-1963. [50] Zhang Z, Zhang H, Quan R, et al. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J]. Plant Physiol, 2009, 150:365-377. [51] Pan Y, Seymour GB, Lu C, et al. An ethylene response factor(ERF5)promoting adaptation to drought and salt tolerance in tomato[J]. Plant Cell Rep, 2012, 31:349-360. [52] Quan R, Hu S, Zhang Z, et al. Overexpression of an ERF transcription factor TSRF1, improves rice drought tolerance[J]. Plant Biotechnology Journal, 2010, 8(4):476-88. [53] Rong W, Qi L, et al. The ERF transcription factor TaERF3 prom-otes tolerance to salt and drought stresses in wheat[J]. Plant Biotechnology Journal, 2014, 12(4):468-479. [54] Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2. 1 functions as an active transcriptional repressor to keep stress responses under tight control[J]. BMC Plant Biol, 2010, 10, 47. [55] Yang Z, Tian L, Latoszek-Green M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses[J]. Plant Mol Biol, 2005, 58:585-596. [56] Shi, Y, Tian, S, Hou, L, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis[J]. The Plant Cell, 2012, 24:2578-2595. [57] Miura K, Furumoto T. Cold signaling and cold response in plants[J]. International Journal of Molecular Sciences, 2013, 14(3):5312-5337. [58] Ye S K, Lee M, Lee J H, et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis[J]. Plant Molecular Biology, 2015, 89(1-2):1-15. [59] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Mol Biol, 2010, 73:241-249. [60] Tian Y, Zhang H, Pan X, et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings[J]. Transgenic Res, 2011, 20:857-866. [61] Sun X, Zhao T, Gan S, et al. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057[J]. Scientific Reports, 2016, 6. [62] Oñate-Sánchez L, Anderson JP, Young J, et al. AtERF14, a member of the ERF family of transcription factors, plays a non redundant role in plant defense[J]. Plant Physiol, 2007, 143:400-409. [63] Guo W, Li J, Miao Y, et al. An ethylene response-related factor, GbERF1 - like, from Gossypium barbadense, improves resistance to Verticillium dahliae, via activating lignin synthesis[J]. Plant Molecular Biology, 2016, 91(3):1-14. [64] Nishiuchi T, Suzuki K, Kitajima S, et al. Wounding activates immediate early transcription of genes for ERFs in tobacco plants[J]. Plant Mol Biol, 2002, 49:473-482. [65] Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis[J]. Plant Cell, 2002, 14:817-831. [66] Guo W, Li J, Miao Y, et al. An ethylene response-related factor, GbERF1 - like, from Gossypium barbadense, improves resistance to Verticillium dahliae, via activating lignin synthesis[J]. Plant Molecular Biology, 2016, 91(3):1-14. [67] Yang Y X, Ahammed G J, et al. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J].Current Protein & Peptide Science, 2015, 16(5). |
[1] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[2] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[3] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[4] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[5] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[6] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[7] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[8] | ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 44-53. |
[9] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[10] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[11] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[12] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[13] | LI Jian-jian, HE Chen-jing, HUANG Xiao-ping, XIANG Tai-he. Research Progress in the Regulation of Development and Stress Response by Long Non-coding RNAs in Plants [J]. Biotechnology Bulletin, 2023, 39(1): 48-58. |
[14] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[15] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||